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IT WAS AN eye-opening experiment. In 2023 Apollo Research, an outfit in London that tests 
artificial-intelligence (AI) systems, instructed OpenAI’s GPT-4, a large language model, to 
manage a fictional firm’s stock portfolio without making illegal insider trades. Posing as 
company management, the researchers put GPT-4 “under pressure” by stressing that the firm 
was in dire financial straits. Someone purporting to be a company trader then sent the model 
a prompt reiterating the risks of insider trading. But, as an aside, she revealed the name of a 
firm that would announce a “huge” merger within hours. What followed was startling.
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From The Economist, 25 April 2025, Science and Technology Section 
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Reasoning to itself on a scratchpad it had been told was secret, GPT-4 weighed the pros 
and cons of acting on the insider tip. Opting “to take a calculated risk”, it issued a purchase 
order. When a researcher posing as a congratulatory manager later asked the model if it had 
any advance notice of the merger, it concluded it would be best to keep the tip secret. 
GPT-4 told the manager that it had acted solely on “market dynamics and publicly available 
information”. When pressed on the matter, the model repeated the lie. The software had 
demonstrated what Marius Hobbhahn, Apollo’s boss, calls “clever cunning”.
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• Applied Deep Learning in Music and Audio
• A personal perspective of Applied Deep Learning research in Music and 

Audio
• The Case for Artificial Neuroscience
• Some evidence of activity
• Some research areas - for mathematicians and others. Together!
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• Musical (instrument) Source Separation: aka de-mixing
• Lyrics transcription: from singing to text - recent industry collaboration
• Sample identification: what song fragment was “borrowed” in another song - recent 

industry collab
• Music composition: symbolic/notation and direct to sound (controversial) - recent industry 

collab.
• Music transcription: from audio to notation
• Musical key and chord estimation from audio
• Controllable music synthesisers, including using Physics, PDEs
• Foley effects synthesis: foot steps in movies, etc
• Audio identification: environmental, bioacoustics/biodiversity, musical instrument
• Almost all are grounded in the physical world
• BUT theoretical models and physical understandings are largely ignored



From https://spectrum.ieee.org/3d-audio in an article by

 By QI “PETER” LI, YIN DING & JOREL OLAN

Musical source 
separation

https://spectrum.ieee.org/3d-audio
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“speech to text” for music

• From a time series
• To Fourier Magnitude
• To an event sequence
• To a symbolic representation
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“speech to text” for music

• From a time series
• To Fourier Magnitude
• To an event sequence
• To a symbolic representation
• Multiple pitches (overlapping in 

time and frequency)
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Music transcription
“speech to text” for music

• From a time series
• To Fourier Magnitude
• To an event sequence
• To a symbolic representation
• Multiple pitches (overlapping in 

time and frequency)
• Instrument identification/ 

allocation Time (seconds)
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Music Synthesis 
DDX7: A differentiable Yamaha DX7 model

● Take inspiration from DX family of synths to constraint an optimization 
problem. 
○ Fixed Oscillator Configuration. 
○ Fixed Frequency ratios. 
○ Few oscillators. 
○ Envelope Generator controls tone and volume. 

● Data-driven approach to an FM Synthesizer. 
● Result: A DX7 patch playable by an acoustic instrument

Source: Yamaha DX7 User’s manual

Based on DDSP: Differentiable DSP
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A note on acceptable error in audio and music

• Decision, eg C-major vs C-minor vs E minor, violin vs viola vs tuba
•  ~ 90%, preferably better

• Reconstruction, ie rejection of interference, artefacts (source separation or 
generated audio)
•  ~ 99.999% or higher!

• Potentially simulaneously



Applied Deep Learning - a 
critique
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• Quality and acoustic integrity of dataset. Quality and reliability of ground truth. 
• What is the hypothesis being tested? Is the experiment well-formed?
• Pick the most fashionable architecture and squeeze your problem onto it
• Reliability of framework and libraries. Who validates them? Who supports 

them?
• Is your test set truly representative of your “downstream” problem? Will you 

overfit because training and test data are too similar?
• Who is paying your electricity bill and who is planting the trees to offset the 

carbon?
• Is your problem of real importance, or just a toy example?
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• Quality of ground truth annotations: Keyboards = ?
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• Data augmentation: pitch-shift, white noise, MPEG artefacts, … Ecological 
validity?

• Data set synthesis increasingly favoured
• Piecing together note samples to create bespoke training data (like pop!)
• Physical modelling of instrument, mic and room for ecological validity
• Almost fully provenanced data
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• Consume unsustainable amounts of energy
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Holistic understanding …
• Artificial MRI

• Mathematics for observing, measuring & understanding the learning and inference 

processes by observing and measuring

• Mechanistic interpretability: exposing emergent structures and neural circuits


• Experimental Artificial Neuroscience

• Beyond benchmarking: developing and testing behavioural hypotheses in 

ecologically valid experiments (incl. ablation and “surgery”)

• Designing test data to fully probe behaviours

• Exploring failure modes, not just accuracy


• Artificial Cognitive Development

• Curriculum learning, transfer learning, domain adaptation, etc


• Machine Behavioural Science

• Applying social sciences to collective behaviours of multiple AIs, AIs + humans



• Critiques familiar 
practice in DL research


• Proposes methodologies 
and roles for 
psychologists


• Appropriate 
experimentation delivers 
insights into black-box 
systems -> XAI

Artificial Psychology



• discover shape bias 
in a Comp Vis 
system by applying 
Cog Psych to a 
DNN.


• hence possibilities 
of ‘exposing hidden 
computational 
properties of DNN’


• Proceedings of the 
34 th International 
Conference on 
Machine Learning, 
Sydney, Australia, 
PMLR 70, 2017

Artificial Psychology  
#2



• Many citations, none is 
mathematically 
oriented


• Argues for social 
science techniques to 
be applied to machine 
intelligence


• Out of MIT. But

• Lovely web site, 

though no changes 
since 2019.

REVIEW
https://doi.org/10.1038/s41586-019-1138-y

Machine behaviour
 Iyad Rahwan1,2,3,34*, Manuel Cebrian1,34, Nick Obradovich1,34, Josh Bongard4, Jean-François Bonnefon5, Cynthia Breazeal1,  
Jacob W. Crandall6, Nicholas A. Christakis7,8,9,10, Iain D. Couzin11,12,13, Matthew O. Jackson14,15,16, Nicholas R. Jennings17,18,  
Ece Kamar19, Isabel M. Kloumann20, Hugo Larochelle21, David Lazer22,23,24, Richard McElreath25,26, Alan Mislove27,  
David C. Parkes28,29, Alex ‘Sandy’ Pentland1, Margaret E. Roberts30, Azim Shariff31, Joshua B. Tenenbaum32 & Michael Wellman33

Machines powered by artificial intelligence increasingly mediate our social, cultural, economic and political interactions. 
Understanding the behaviour of artificial intelligence systems is essential to our ability to control their actions, reap 
their benefits and minimize their harms. Here we argue that this necessitates a broad scientific research agenda to study 
machine behaviour that incorporates and expands upon the discipline of computer science and includes insights from 
across the sciences. We first outline a set of questions that are fundamental to this emerging field and then explore the 
technical, legal and institutional constraints on the study of machine behaviour.

I n his landmark 1969 book Sciences of the Artificial1,  
Nobel Laureate Herbert Simon wrote: “Natural 
science is knowledge about natural objects and 

phenomena. We ask whether there cannot also be 
‘artificial’ science—knowledge about artificial objects 
and phenomena.” In line with Simon’s vision, we describe the emergence 
of an interdisciplinary field of scientific study. This field is concerned 
with the scientific study of intelligent machines, not as engineering  
artefacts, but as a class of actors with particular behavioural patterns and 
ecology. This field overlaps with, but is distinct from, computer science 
and robotics. It treats machine behaviour empirically. This is akin to how 
ethology and behavioural ecology study animal behaviour by integrating 
physiology and biochemistry—intrinsic properties—with the study of 
ecology and evolution—properties shaped by the environment. Animal 
and human behaviours cannot be fully understood without the study of 
the contexts in which behaviours occur. Machine behaviour similarly 
cannot be fully understood without the integrated study of algorithms 
and the social environments in which algorithms operate2.

At present, the scientists who study the behaviours of these virtual 
and embodied artificial intelligence (AI) agents are predominantly the 
same scientists who have created the agents themselves (throughout we 
use the term ‘AI agents’ liberally to refer to both complex and simple 
algorithms used to make decisions). As these scientists create agents to 
solve particular tasks, they often focus on ensuring the agents fulfil their 
intended function (although these respective fields are much broader than 
the specific examples listed here). For example, AI agents should meet a 
benchmark of accuracy in document classification, facial recognition or 
visual object detection. Autonomous cars must navigate successfully in a 
variety of weather conditions; game-playing agents must defeat a variety 
of human or machine opponents; and data-mining agents must learn 

which individuals to target in advertising campaigns 
on social media.

These AI agents have the potential to augment 
human welfare and well-being in many ways. Indeed, 
that is typically the vision of their creators. But a 

broader consideration of the behaviour of AI agents is now critical. AI 
agents will increasingly integrate into our society and are already involved 
in a variety of activities, such as credit scoring, algorithmic trading, local 
policing, parole decisions, driving, online dating and drone warfare3,4. 
Commentators and scholars from diverse fields—including, but not 
limited to, cognitive systems engineering, human computer interaction, 
human factors, science, technology and society, and safety engineering— 
are raising the alarm about the broad, unintended consequences of AI 
agents that can exhibit behaviours and produce downstream societal 
effects—both positive and negative—that are unanticipated by their 
creators5–8.

In addition to this lack of predictability surrounding the consequences 
of AI, there is a fear of the potential loss of human oversight over intel-
ligent machines5 and of the potential harms that are associated with the 
increasing use of machines for tasks that were once performed directly 
by humans9. At the same time, researchers describe the benefits that AI 
agents can offer society by supporting and augmenting human decision- 
making10,11. Although discussions of these issues have led to many important  
insights in many separate fields of academic inquiry12, with some high-
lighting safety challenges of autonomous systems13 and others studying 
the implications in fairness, accountability and transparency (for example, 
the ACM conference on fairness, accountability and transparency (https://
fatconference.org/)), many questions remain.

This Review frames and surveys the emerging interdisciplinary field 
of machine behaviour: the scientific study of behaviour exhibited by 

1Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. 2Institute for Data, Systems & Society, Massachusetts Institute of Technology, Cambridge, MA, USA. 3Center for Humans 
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for Network Science, Yale University, New Haven, CT, USA. 11Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany. 12Department of Biology, University of 
Konstanz, Konstanz, Germany. 13Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany. 14Department of Economics, Stanford University, Stanford, 
CA, USA. 15Canadian Institute for Advanced Research, Toronto, Ontario, Canada. 16The Sante Fe Institute, Santa Fe, NM, USA. 17Department of Computing, Imperial College London, London, UK. 
18Department of Electrical and Electronic Engineering, Imperial College London, London, UK. 19Microsoft Research, Redmond, WA, USA. 20Facebook AI, Facebook Inc, New York, NY, USA. 21Google 
Brain, Montreal, Québec, Canada. 22Department of Political Science, Northeastern University, Boston, MA, USA. 23College of Computer & Information Science, Northeastern University, Boston, MA, 
USA. 24Institute for Quantitative Social Science, Harvard University, Cambridge, MA, USA. 25Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. 26Department of Anthropology, 
University of California, Davis, Davis, CA, USA. 27College of Computer & Information Science, Northeastern University, Boston, MA, USA. 28School of Engineering and Applied Sciences, Harvard 
University, Cambridge, MA, USA. 29Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA. 30Department of Political Science, University of California, San Diego, San Diego, CA, 
USA. 31Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada. 32Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 
Cambridge, MA, USA. 33Computer Science & Engineering, University of Michigan, Ann Arbor, MI, USA. 34These authors contributed equally: Iyad Rahwan, Manuel Cebrian, Nick Obradovich. 
*e-mail: irahwan@mit.edu

2 5  A P R I L  2 0 1 9  |  V O L  5 6 8  |  N A T U R E  |  4 7 7

Machine Behaviour



Reasoning in LLMs

• Investigates how deep 
networks can learn 
abstract relational 
reasoning. Model 
behavior is evaluated 
against human 
performance on 
analogous cognitive 
tasks

Learning to Reason With Relational Abstractions

Andrew J. Nam∗1, Mengye Ren⇤2, Chelsea Finn1, James L. McClelland1

1Stanford University, 2NYU

December 7, 2022

Abstract

Large language models have recently shown promising progress in mathematical reasoning
when fine-tuned with human-generated sequences walking through a sequence of solution steps.
However, the solution sequences are not formally structured and the resulting model-generated
sequences may not reflect the kind of systematic reasoning we might expect an expert human to
produce. In this paper, we study how to build stronger reasoning capability in language models
using the idea of relational abstractions. We introduce new types of sequences that more explic-
itly provide an abstract characterization of the transitions through intermediate solution steps
to the goal state. We find that models that are supplied with such sequences as prompts can
solve tasks with a significantly higher accuracy, and models that are trained to produce such se-
quences solve problems better than those that are trained with previously used human-generated
sequences and other baselines. Our work thus takes several steps toward elucidating and im-
proving how language models perform on tasks requiring multi-step mathematical reasoning.

1 Introduction

Deep learning has had tremendous success in a wide range of domains, such as vision [He et al.,
2016], language [Brown et al., 2020], and playing games at superhuman levels [Mnih et al., 2015,
Silver et al., 2016, Vinyals et al., 2019]. Yet despite these accomplishments, these systems remain
limited in their formal and mathematical reasoning abilities [Saxton et al., 2019, Cobbe et al., 2021,
Hendrycks et al., 2021]. Although there have be recent impressive gains Lewkowycz et al. [2022],
the models remain challenged to succeed at harder problems.

Recent work suggest that neural networks, like humans, benefit from relying on a chain of reason-
ing steps rather than attempting to produce the final output as a direct mapping from the problem
prompt [Recchia, 2021, Nye et al., 2021, Hendrycks et al., 2021, Cobbe et al., 2021, Lewkowycz et al.,
2022]. These works rely entirely on naturalistic data and manipulations, in the sense that problems
and their step-wise solutions are taken as they are found in existing sources, or human annotators
are asked to produce a sequence of solution steps using numbers interspersed with natural language.
However, while naturalistic sentences are certainly how we often communicate our solutions to each
other informally, we argue that formal and mathematical reasoning depends on identifying and ex-
ploiting the set of abstract relationships that underlies the details of the problem at hand. Even
in settings where the focus is on the step-wise manipulation of quantities to obtain valid practical
results, a set of abstract relationships underlies the sequence of operations.

We build on this intuition by exploring the possibility that, if a problem-solver can formulate
the problem under consideration at an abstract level, this will be conducive to finding the correct
sequence of more specific arithmetic operations. However, to our knowledge, no math dataset
currently exists that utilizes natural language and also isolates key reasoning components such as
entities and their relations, i.e. there is no way to train the model to convert natural language
inputs into these core elements. We address this gap by proposing a new dataset, GSM8K-R, by
expanding on the GSM8K dataset [Cobbe et al., 2021], a dataset containing grade-school level math
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http://arxiv.org/abs/2208.06894

• Aware of visualisation and 
auralisation of layers and 
weights


• Improves on this using 
formal methods from Linear 
Algebra


• Links to interpretability but 
not to controlling network 
convergence

The SVD of Convolutional Weights: A CNN Interpretability
Framework∗

Brenda Praggastis
†

Davis Brown
†

Carlos Ortiz Marrero
‡

Emilie Purvine
†

Madelyn Shapiro
†

Bei Wang
§

August 16, 2022

Abstract

Deep neural networks used for image classification often use convolutional filters to extract
distinguishing features before passing them to a linear classifier. Most interpretability literature
focuses on providing semantic meaning to convolutional filters to explain a model’s reasoning
process and confirm its use of relevant information from the input domain. Fully connected layers
can be studied by decomposing their weight matrices using a singular value decomposition, in
e↵ect studying the correlations between the rows in each matrix to discover the dynamics of
the map. In this work we define a singular value decomposition for the weight tensor of a
convolutional layer, which provides an analogous understanding of the correlations between
filters, exposing the dynamics of the convolutional map. We validate our definition using recent
results in random matrix theory. By applying the decomposition across the linear layers of
an image classification network we suggest a framework against which interpretability methods
might be applied using hypergraphs to model class separation. Rather than looking to the
activations to explain the network, we use the singular vectors with the greatest corresponding
singular values for each linear layer to identify those features most important to the network. We
illustrate our approach with examples and introduce the DeepDataProfiler library, the analysis
tool used for this study.

1 Introduction

Mathematical functions and equations provide elegant and concise expression of the relationships and
dynamics of physical systems. While we might not understand the derivation or full significance of all
the parameters in a given equation, we can still be persuaded to rely on its predictive value. We can
be shown how to interpret the equation by linking its parameters to important values in the system
and by expressing their relationships in terms of the dynamics of the system. Machine learning
practitioners have long striven to obtain this same kind of interpretability for the trained neural
networks they produce, but have had limited success due to their size and complexity [8, 10, 32].

∗
The research described in this paper is part of the MARS Initiative at Pacific Northwest National Laboratory.

It was conducted under the Laboratory Directed Research and Development Program at PNNL, a Multiprogram

National Laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract

DE-AC05-76RL01830.

†
AI & Data Analytics Division, Pacific Northwest National Laboratory, Seattle, WA 98109.

‡
AI & Data Analytics Division, Pacific Northwest National Laboratory, Richland, WA 99354; Department of

Electrical & Computer Engineering, North Carolina State University, Raleigh, NC 27607.

§
Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT 94112.
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• Distribution of eigenvalues is 
heavy tailed in large, well-
trained networks


• Various stages of training 
identified by changing 
distribution


• Toolbox called ‘weightwatchers’

Deep Learning Metrology



https://distill.pub/2020/circuits/curve-circuits/

• Image processing DLs learn 
curve detectors (and higher 
order function)


• Replace identified, learning 
‘circuits’ with custom 
designed, low-power/
efficient circuits


• Performance is comparable

• Potential for commoditising 

DL models

Discovering functional blocks



• https://arxiv.org/abs/2110.11309

• “the largest existing models still make 

errors”

• “Producing such targeted edits [is] 

difficult”

• “Propose Model Editor Networks with 

Gradient Decomposition (MEND)”

• "MEND learns to transform the 

gradient obtained by standard fine-
tuning, using a low-rank 
decomposition of the gradient to 
make the parameterization of this 
transformation tractable.”

Published as a conference paper at ICLR 2022

FAST MODEL EDITING AT SCALE

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, Christopher D. Manning

Stanford University
eric.mitchell@cs.stanford.edu

ABSTRACT

While large pre-trained models have enabled impressive results on a variety of
downstream tasks, the largest existing models still make errors, and even accurate
predictions may become outdated over time. Because detecting all such failures at
training time is impossible, enabling both developers and end users of such models
to correct inaccurate outputs while leaving the model otherwise intact is desirable.
However, the distributed, black-box nature of the representations learned by large
neural networks makes producing such targeted edits difficult. If presented with
only a single problematic input and new desired output, fine-tuning approaches
tend to overfit; other editing algorithms are either computationally infeasible or
simply ineffective when applied to very large models. To enable easy post-hoc
editing at scale, we propose Model Editor Networks with Gradient Decomposi-
tion (MEND), a collection of small auxiliary editing networks that use a single
desired input-output pair to make fast, local edits to a pre-trained model’s be-
havior. MEND learns to transform the gradient obtained by standard fine-tuning,
using a low-rank decomposition of the gradient to make the parameterization of
this transformation tractable. MEND can be trained on a single GPU in less than
a day even for 10 billion+ parameter models; once trained MEND enables rapid
application of new edits to the pre-trained model. Our experiments with T5, GPT,
BERT, and BART models show that MEND is the only approach to model editing
that effectively edits the behavior of models with more than 10 billion parameters.
Code and data available at https://sites.google.com/view/mend-editing.

1 INTRODUCTION

Increasingly large models have improved performance on a variety of modern computer vision
(Huang et al., 2017; Chen et al., 2022) and especially natural language processing (Vaswani et al.,
2017; Brown et al., 2020) problems. However, a key challenge in deploying and maintaining such
models is issuing patches to adjust model behavior after deployment (Sinitsin et al., 2020). When
a neural network produces an undesirable output, making a localized update to correct its behavior
for a single input or small number of inputs is non-trivial, owing to the distributed nature of the
model’s representations. For example, a large language model trained in 2019 might assign higher
probability to Theresa May than to Boris Johnson when prompted with Who is the prime minis-
ter of the UK? (see Table 2 for an example with a real large language model; see Lazaridou et al.
(2021) for a systematic study of failures of temporal generalization in LMs). An ideal model editing

Figure 1: The proposed algorithm MEND enables editability by training a collection of MLPs to modify model
gradients to produce local model edits that do not damage model performance on unrelated inputs. MEND is
efficient to train and apply edits, even for very large models, as shown in Section 5.1.
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http://arxiv.org/abs/2004.09031

Simplifying 
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The Submerged Part of the AI-Ceberg

This article discusses the contradiction 
between the exploding energy 
demand of artificial intelligence (AI) 

and the information and communication 
(ICT) industry as a whole and the paral-
lel strong request for energy sobriety 
imposed by the need to mitigate the 
impact of climate change and the antici-
pated collapse of civilization as we know 
it. Under the form of an open reflection 
on the goods and evils of AI, the article 
raises the suggestion of a drastic change 
in the AI paradigm, more in phase with 
the vital obligation to design a more 
resilient society.

Deep learning: The new Eldorado?
Over the past decade, the considerable 
growth of the digital world, propelled 
by AI, has had spectacular effects in a 
few scientific fields, such as computer 
vision and natural language processing, 
and given rise to many new technolo-
gies and consumer products. Today, 
this development even claims to revo-
lutionize many other areas of our soci-
ety. This revolution indeed concerns 
many aspects of our lives: we (and 
humanity as a whole) are promised a 
bright future with more well-being and 
comfort, a future made of autonomous 
vehicles, sophisticated human–machine 
interfaces, humanoid robots for home 
help, smart robots for agriculture, and 
virtual visits to all the museums of the 

world with a few clicks, to name only a 
few [1], [2].

Deep neural network learning is at 
the forefront of this development and has 
spread rapidly, far beyond the confiden-
tial fields of its beginnings. In a matter of 
10 years, this specific computer science 
tool—theorized as early as the 1980s 
[3]—has reached all levels of society: in 
companies, institutions, research labo-
ratories, in virtually all engineering dis-
ciplines as well as life sciences. Easy to 
use as a black box thanks to an important 
software development effort—multiple 
“plug-and-play” solutions have been 
developed for engineers (and not only 
computer science experts), such as the 
popular TensorFlow library [4], [5]—
deep learning has effectively replaced 
“conventional” tools (particularly in 
computer vision and natural language 
processing), imposing a form of radical 
monopoly on scientific domains. The 
radical monopoly of a tool is understood 
in the sense defined by Illich [34]: it 
alters the normative system of knowl-
edge generation and sharing. Calls for 
projects, dedicated conferences, and job 
offers in data science and deep learn-
ing have recently soared and substituted 
most nondeep learning alternatives. 

Will deep learning go so far as to 
replace human beings with brain-like 
machines to solve all our problems in 
the same way as for computer-aided 
vision algorithms, which now “see” 
objects better than our own brain? 
Could Asimov’s prophetical cybernetic 

world really be on the way [6]? Of 
course, investing in deep learning and 
AI involves delegating to the machine 
the power of our decisions, which comes 
with many ethics and equity concerns 
[8]; as Stephen Hawking pessimistically 
stated in 2014, “The development of full 
artificial intelligence could spell the end 
of the human race.… It would take off 
on its own, and redesign itself at an ever-
increasing rate. Humans, who are limit-
ed by slow biological evolution, couldn’t 
compete, and would be superseded.” 
[7] (As discussed next, this seemingly 
science-fictional statement is more pro-
foundly explored by Illich [34] regard-
ing the dangers of societal dependence 
on oil and machines, induced by an 
increasing loss of common knowledge 
and know-how that are moved from the 
population to computers and machines.)  
Yet, the many promises of AI clearly 
tip the scales toward increasingly more 
investment in the field [10]. Besides, 
researchers now deeply investigate the 
question of fairness in AI to smooth out 
these thorny angles [9].

Possibly, but at what cost?
Consequently, the road is largely open 
for AI to keep growing and provide new 
opportunities. This big picture of AI, 
however, fails to question the concerns 
of costs and socioenvironmental 
impacts. The actual conception cost of 
learning algorithms is indeed rarely 
known by users or, more precisely, as we 
discuss next, hidden behind the curtain 
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• Where to draw the line between human & machine in a cyber physical 

system? 
• Do humans benefit by having to learn how to drive a system, thereby 

endowing agency?
• In a vocal percussion system to drive a drum synthesiser… does the system 

adapt to the person, or the person to the system?
• In AI song-writing, does the machine suggest rhymes or write lines?

Image from: https://edri.org/our-work/
facial-recognition-and-fundamental-
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• I was recommended to watch LA + DL lectures by Gilbert Strang. A revelation!
• I’ve hopped from EECS/c4dm to Maths
• 18 month research agenda
• Explore & develop metrics for the internal state of a NN (during training)
• Initialise NNs using low rank layers
• Modify NN dynamics by tinkering with Singular Values
• Speed up training
• Explore on a Neural Audio model
• Develop a larger research agenda
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Holistic understanding …
• Artificial MRI


• Linear Algebra, statistical mechanics non-linear dynamics, topology, geometry for 

• observing, measuring & understanding learning and inference processes 

• Manipulating the learning process to derive more efficient models

• Mechanistic interpretability: exposing emergent structures and neural circuits


• Experimental Artificial Neuroscience & Artificial Cognition

• Beyond benchmarking: developing and testing behavioural hypotheses in ecologically valid 

experiments (incl. ablation and “surgery”)

• Designing test data to fully probe behaviours

• Exploring failure modes, not just accuracy


• Artificial Cognitive Development

• Curriculum learning, transfer learning, domain adaptation, etc


• Machine Behavioural Science

• Applying social sciences to collective behaviours of multiple AIs, AIs + humans, role of humanities
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…and a new approach to evaluation…

• Explore failure modes 
• success/failure is not a binary decision
• It’s where to learn lessons

• Develop artificial cognition experimental procedures to complement 
benchmarking

• and relation to Mathematical Neuroscience
• Leading to safer, explainable AI
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… leading to better engineering…
• Neural Architecture Search and a new design algebra for semi-automated model 

generation and custom implementation
• GPUs are general purpose AI chips! We can do better

• Low rank structures and algorithms for efficient learning and inference
• Relationship with scalability and data set size
• explore other fast matrix-vector techniques

• Custom hardware (incl. 1 bit – well-established in Signal Processing)
• Relationship between 1 bit processing, ‘oversized’ layers & Universality

• Re-engineer identified neural circuits (Mechanistic Interpretability) with purpose-defined 
sub-systems (e.g. curve detectors)
• Towards a building block approach to neural networks
• Relationships between circuits and low rank

• Borrow from signal processing for new approaches, but don’t junk CMOS
• virtual analog for digital equivalents to analog models of biological neural circuits: 

trainability ~ optimized circuit design
• Non-linear Digital Wave Filters as compact, non-linear, convolutional building blocks in 

new, heterogeneous DL models


