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But first, a cautionary tale

From The Economist, 25 April 2025, Science and Technology Section
Al Models can learn to conceal information from their users

IT WAS AN eye-opening experiment. In 2023 Apollo Research, an outfit in London that tests
artificial-intelligence (Al) systems, instructed OpenAl’'s GPT-4, a large language model, to
manage a fictional firm’s stock portfolio without making illegal insider trades. Posing as
company management, the researchers put GPT-4 “under pressure” by stressing that the firm
was in dire financial straits. Someone purporting to be a company trader then sent the model
a prompt reiterating the risks of insider trading. But, as an aside, she revealed the name of a
firm that would announce a “huge” merger within hours. What followed was startling.
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But first, a cautionary tale

From The Economist, 25 April 2025, Science and Technology Section
Al Models can learn to conceal information from their users

Reasoning to itself on a scratchpad it had been told was secret, GPT-4 weighed the pros
and cons of acting on the insider tip. Opting “to take a calculated risk”, it issued a purchase
order. When a researcher posing as a congratulatory manager later asked the model if it had
any advance notice of the merger, it concluded it would be best to keep the tip secret.
GPT-4 told the manager that it had acted solely on “market dynamics and publicly available
information”. When pressed on the matter, the model repeated the lie. The software had

demonstrated what Marius Hobbhahn, Apollo’s boss, calls “clever cunning”.
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Overview

* Applied Deep Learning in Music and Audio

* A personal perspective of Applied Deep Learning research in Music and
Audio

* The Case for Artificial Neuroscience
 Some evidence of activity
 Some research areas - for mathematicians and others. Together!
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Typical problems in Music and Audio
All now use DL.: they didn’t used to, though ML was omnipresent!

* Musical (instrument) Source Separation: aka de-mixing
* Lyrics transcription: from singing to text - recent industry collaboration

 Sample identification: what song fragment was “borrowed” in another song - recent
industry collab

 Music composition: symbolic/notation and direct to sound (controversial) - recent industry
collab.

* Music transcription: from audio to notation
 Musical key and chord estimation from audio
» Controllable music synthesisers, including using Physics, PDEs
* Foley effects synthesis: foot steps in movies, etc
* Audio identification: environmental, bioacoustics/biodiversity, musical instrument
* Almost all are grounded in the physical world
« BUT theoretical models and physical understandings are largely ignored
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Music transcription

“speech to text” for music
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Music transcription

“speech to text” for music

 From a time series

* To Fourier Magnitude

 [o an event sequence

o a symbolic representation

* Multiple pitches (overlapping in
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Music transcription

“speech to text” for music

 From a time series

* To Fourier Magnitude

 [o an event sequence

o a symbolic representation

* Multiple pitches (overlapping in
time and frequency)
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Music Synthesis

DDXY7: A differentiable Yamaha DX7 model

Based on DDSP: Differentiable DSP

_________________________ )
: fundamental
1! frequenc
)[ Pitch ~ ™~ q 4
4 ™) y >
Target TCN >
Audio Decoder :
oscillator

q y >
4>|'Loudness]~ \ / envelopes

f

Tone will change

]

Volume will change

Source: Yamaha DX7 User’s manual

4 )
| Synthesized
—>[ Reverb ]—) Audio

\. J/

=i~
Y Y
| |
Y Y
~s| |~ C
, Configuration
\_ FMSynth /

)[ MSS Loss ]4

e Take inspiration from DX family of synths to constraint an optimization

problem.

Fixed Oscillator Configuration.

Fixed Frequency ratios.

Few oscillators.

Envelope Generator controls tone and volume.
e Data-driven approach to an FM Synthesizer.

O O O O

e Result: A DX7 patch playable by an acoustic instrument
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A note on acceptable error in audio and music

* Decision, eg C-major vs C-minor vs E minor, violin vs viola vs tuba
e ~ 90%, preferably better

 Reconstruction, ie rejection of interference, artefacts (source separation or
generated audio)

e ~99.999% or higher!
e Potentially simulaneously
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A typical Al/Music/Audio Deep Tt see S
Learning research pipeline =V iyaYaiaYay v
qs(z|x) Po(x|z)

VAE lllustration by Stephen G. Odaibo, M.D.
From: https.//medium.com/retina-ai-health-inc/variational-inference-derivation-of-the-variational-autoencoder-vae-loss-function-a-true-story-3543a3dc67ee



A typical Al/Music/Audio Deep
Learning research pipeline

qs(z|x)

* Find or Create a dataset for your problem area. It needs some ground truth.
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A typical Al/Music/Audio Deep | @ - - - - i
Learning research pipeline =V iyaYaiaYay v

ps(x|z)

ae(z]x) 4";i.bb

VAE lllustration by Stephen G. Odaibo, M.D.
From: https.//medium.com/retina-ai-health-inc/variational-inference-derivation-of-the-variational-autoencoder-vae-loss-function-a-true-story-3543a3dc67ee

* Find or Create a dataset for your problem area. It needs some ground truth.
 Choose a specific DL architecture: Transformer, CNN, RNN, LSTM etc.




A A

A typical Al/Music/Audio Deep T heee

Learning research pipeline =V iyaYaiaYay v
Qe(2]x) 0 pe(X|2)

VAE lllustration by Stephen G. Odaibo, M.D.
From: https.://medium.com/retina-ai-health-inc/variational-inference-derivation-of-the-variational-autoencoder-vae-loss-function-a-true-story-3543a3dc67ee

* Find or Create a dataset for your problem area. It needs some ground truth.
 Choose a specific DL architecture: Transformer, CNN, RNN, LSTM etc.

* Decide your input format: end-to-end (i.e. signal in) or transform in (e.g. Mel Spectrum,
MFCC, Constant-Q, Wavelet, Wavelet of Wavelet,...)
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A typical Al/Music/Audio Deep | : -
Learning research pipeline < viya

VAE lllustration by Stephen G. Odaibo, M.D.

From: https.//medium.com/retina-ai-health-inc/variational-inference-derivation-of-the-variational-autoencoder-va

* Find or Create a dataset for your problem area. It needs some ground truth.
 Choose a specific DL architecture: Transformer, CNN, RNN, LSTM etc.
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ction-a-true-story-3543a3dc67ee

* Decide your input format: end-to-end (i.e. signal in) or transform in (e.g. Mel Spectrum,

MFCC, Constant-Q, Wavelet, Wavelet of Wavelet,...)
 Choose a training regime and loss function: Triplet loss, L2 Norm etc., ...
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A typical Al/Music/AudioDeep | = -~ - - - :
Learning research pipeline =V iyaYaiaYay v

ps(x|z)

ae(z]x) <1";i.bb

VAE lllustration by Stephen G. Odaibo, M.D.
From: https.://medium.com/retina-ai-health-inc/variational-inference-derivation-of-the-variational-autoencoder-vae-loss-function-a-true-story-3543a3dc67ee

* Find or Create a dataset for your problem area. It needs some ground truth.
 Choose a specific DL architecture: Transformer, CNN, RNN, LSTM etc.

* Decide your input format: end-to-end (i.e. signal in) or transform in (e.g. Mel Spectrum,
MFCC, Constant-Q, Wavelet, Wavelet of Wavelet,...)

 Choose a training regime and loss function: Triplet loss, L2 Norm etc., ...
 Decide how many layers and how big each is
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A typical Al/Music/Audio Deep |
Learning research pipeline
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VAE lllustration by Stephen G. Odaibo, M.D.
From: https.://medium.com/retina-ai-health-inc/variational-inference-derivation-of-the-variational-autoencoder-vae-loss-function-a-true-story-3543a3dc67ee

* Find or Create a dataset for your problem area. It needs some ground truth.
 Choose a specific DL architecture: Transformer, CNN, RNN, LSTM etc.

* Decide your input format: end-to-end (i.e. signal in) or transform in (e.g. Mel Spectrum,
MFCC, Constant-Q, Wavelet, Wavelet of Wavelet,...)

 Choose a training regime and loss function: Triplet loss, L2 Norm etc., ...
 Decide how many layers and how big each is
* Decide which framework and libraries to use

Q¢ ¢¢ o9 2P 2>

e

po(x|2)




®»
c
©

A typical Al/Music/Audio Deep |
Learning research pipeline
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VAE lllustration by Stephen G. Odaibo, M.D.
From: https.//medium.com/retina-ai-health-inc/variational-inference-derivation-of-the-variational-autoencoder-vae-loss-function-a-true-story-3543a3dc67ee

* Find or Create a dataset for your problem area. It needs some ground truth.
 Choose a specific DL architecture: Transformer, CNN, RNN, LSTM etc.

* Decide your input format: end-to-end (i.e. signal in) or transform in (e.g. Mel Spectrum,
MFCC, Constant-Q, Wavelet, Wavelet of Wavelet,...)

 Choose a training regime and loss function: Triplet loss, L2 Norm etc., ...

 Decide how many layers and how big each is

* Decide which framework and libraries to use

e Split the data set into training, (validation) and testing, possibly using F-fold validation
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* Decide which framework and libraries to use
» Split the data set into training, (validation) and testing, possibly using F-fold validation
* Run experiments for hours or days.
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* Find or Create a dataset for your problem area. It needs some ground truth.
 Choose a specific DL architecture: Transformer, CNN, RNN, LSTM etc.

* Decide your input format: end-to-end (i.e. signal in) or transform in (e.g. Mel Spectrum,
MFCC, Constant-Q, Wavelet, Wavelet of Wavelet,...)

 Choose a training regime and loss function: Triplet loss, L2 Norm etc., ...

 Decide how many layers and how big each is

* Decide which framework and libraries to use

» Split the data set into training, (validation) and testing, possibly using F-fold validation
* Run experiments for hours or days.

* Evaluate against ground truth, generate statistics, prove your approach is this week’s State
of the Art.
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* Find or Create a dataset for your problem area. It needs some ground truth.
 Choose a specific DL architecture: Transformer, CNN, RNN, LSTM etc.

* Decide your input format: end-to-end (i.e. signal in) or transform in (e.g. Mel Spectrum,
MFCC, Constant-Q, Wavelet, Wavelet of Wavelet,...)

 Choose a training regime and loss function: Triplet loss, L2 Norm etc., ...
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 Decide how many layers and how big each is

* Decide which framework and libraries to use

» Split the data set into training, (validation) and testing, possibly using F-fold validation
* Run experiments for hours or days.

* Evaluate against ground truth, generate statistics, prove your approach is this week’s State
of the Art.
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All these could go wrong!
Or not be right enough

* Quality and acoustic integrity of dataset. Quality and reliability of ground truth.
 What is the hypothesis being tested? Is the experiment well-formed??
* Pick the most fashionable architecture and squeeze your problem onto it

* Reliability of framework and libraries. Who validates them”? Who supports
them?

* |s your test set truly representative of your “downstream” problem? Will you
overfit because training and test data are too similar?

 Who is paying your electricity bill and who is planting the trees to offset the
carbon?

* |s your problem of real importance, or just a toy example”?
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» Data quality: how ecologically valid should it be?

* Representative quality: enough genres? rhythmic variety? acoustic vs studio
recordings? #instruments, #chord types, MPEG or uncompressed?

* Quality of ground truth annotations: Keyboards = ?
* Inter-rater agreement is rarely examined

 Data augmentation: pitch-shift, white noise, MPEG artefacts, ... Ecological
validity?

 Data set synthesis increasingly favoured
* Piecing together note samples to create bespoke training data (like pop!)
* Physical modelling of instrument, mic and room for ecological validity
* Almost fully provenanced data
* | eads to better trained, more generalisable models
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Artificial what?

this talk, so far

 What'’s the problem here?

lack of experimental
rigour

lack of engineering

Lack of mathematical
models

Paucity of ethical
standards

e “Artificial brains” created that

Aren’t understood - structures so huge and
diverse. There is no “algebra” of DL

Aren’t evaluated properly, rely on
benchmarking (i.e. engineering not cognition-
oriented). What about ecological validity?

Are often with data that isn’t optimal
(get what you can)

Interact with each other and with humans,
proliferating

Consume amounts of energy
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Artificial Neuroscience

What’s in a name?

 Neuroscience - several disciplines dealing < Artificial Neuroscience needs

with the structure, development, function, an equivalent definition and

chemistry, pharmacology, and pathology corresponding set of

of the nervous system (the brain, spinal disciplines going beyond

cord, and peripheral nervous system). Computer Science.
 Combines physiology, anatomy, molecular « Several branches of

biology, developmental biology, cytology, mathematics are vital. So are

psychology, physics, computer science, Engineering, VLSI & Circuits,

chemistry, medicine, statistics, and Behavioural Sciences,

mathematical modeling to understand the Humanities, and of course,

fundamental and emergent properties of application domain knowledge

neurons, glia and neural circuits



Holistic understanding ...

* Artificial MRI

 Mathematics for observing, measuring & understanding the learning and inference
processes by observing and measuring

* Mechanistic interpretabllity: exposing emergent structures and neural circuits
* Experimental Artificial Neuroscience

 Beyond benchmarking: developing and testing behavioural hypotheses In
ecologically valid experiments (incl. ablation and “surgery”)

* Designing test data to fully probe behaviours
* Exploring failure modes, not just accuracy

* Curriculum learning, transfer learning, domain adaptation, etc
 Machine Behavioural Science
* Applying social sciences to collective behaviours of multiple Als, Als + humans



Artificial Psychology

e Critiques familiar
practice in DL research

 Proposes methodologies
and roles for
psychologists

* Appropriate
experimentation delivers
iInsights into black-box
systems -> XAl

Psychonomic Bulletin and Review (2021) 28:454-475
https://doi.org/10.3758/513423-020-01825-5

THEORETICAL REVIEW 4')

Check for
updates

Artificial cognition: How experimental psychology can help
generate explainable artificial intelligence

J. Eric T. Taylor'- . Graham W. Taylor'~?

Accepted: 2 October 2020 / Published online: 6 November 2020
© The Psychonomic Society, Inc. 2020

Abstract

Artificial intelligence powered by deep neural networks has reached a level of complexity where it can be difficult or
umpossible to express how a model makes 1ts decisions. This black-box problem is especially concerning when the model
makes decisions with consequences for human well-being. In response, an emerging lield called explainable artificial
intelligence (XAI) aims to increase the interpretability, fairness, and transparency of machine learning. In this paper, we
describe how cognitive psychologists can make contributions to XAl. The human mind is also a black box, and cognitive
psychologists have over 150 years of experience modeling i1t through experimentation. We ought to translate the methods
and rigor of cognitive psychology to the study of artificial black boxes in the service of explainability. We provide a review
of XAl for psychologists, arguing that current methods possess a blind spot that can be complemented by the experimental
cognitive tradition. We also provide a framework for rescarch in XAl highlight exemplary cases of experimentation within
XAI 1nspired by psychological science, and provide a tutorial on experimenting with machines. We end by noting the
advantages of an experimental approach and invite other psychologists to conduct research in this exciting new field.



Artificial Psychology

#2

discover shape bias
in a Comp Vis
system by applying
Cog Psych to a
DNN.

hence possibilities
of ‘exposing hidden
computational
properties of DNN’

Proceedings of the
34 th International
Conference on
Machine Learning,
Sydney, Australia,
PMLR 70, 2017

Cognitive Psychology for Deep Neural Networks:
A Shape Bias Case Study

Samuel Ritter

David G.T. Barrett

Adam Santore '  Matt M. Botvinick '

Abstract

Deep neural networks (DNNs) have advanced
performance on a wide range of complex tasks,
rapidly outpacing our understanding of the na-
ture of their solutions. While past work sought
to advance our understanding of these models,
none has made use of the rich history of problem
descriptions, theories, and experimental methods
developed by cognitive psychologists to study
the human mind. To explore the potential value
of these tools, we chose a well-established analy-
sis from developmental psychology that explains
how children learn word labels for objects, and
applied that analysis to DNNs. Using datasets
of stimuli inspired by the original cognitive psy-
chology experiments, we find that state-of-the-art
one shot learning models trained on ImageNet
exhibit a similar bias to that observed in hu-
mans: they prefer to categorize objects accord-
ing to shape rather than color. The magnitude
of this shape bias varies greatly among archi-
tecturally identical, but differently seeded mod-
els, and even fluctuates within seeds through-
out training, despite nearly equivalent classifi-
cation performance. These results demonstrate
the capability of tools from cognitive psychology
for exposing hidden computational properties of
DNNs, while concurrently providing us with a
computational model for human word learning.




Machine Behaviour
REVIEW

https://doi.org/10.1038/s41586-019-1138-y

 Many citations, none is
mathematically

oriented Machine behaviour

[yad Rahwanb?33% Manuel Cebrian'>*, Nick Obradovich34, Josh Bongard*, Jean-Francois Bonnefon’, Cynthia Breazeal!,
Jacob W. Crandall®, Nicholas A. Christakis”®%19 Iain D. Couzin''%13, Matthew O. Jackson'*'>1® Nicholas R. Jennings'/-!8,

¢ Arg ues fO I SOCI al Ece Kamar!®, Isabel M. Kloumann?®, Hugo Larochelle?!, David Lazer???3%4, Richard McElreath?>?®, Alan Mislove?’,
. . David C. Parkes?®?°, Alex ‘Sandy’ Pentland!, Margaret E. Roberts®®, Azim Shariff?!, Joshua B. Tenenbaum?? & Michael Wellman??
science techniques to

be applied to machine

i N 't e I I | g ence Machines powered by artificial intelligence increasingly mediate our social, cultural, economic and political interactions.
Understanding the behaviour of artificial intelligence systems is essential to our ability to control their actions, reap
their benefits and minimize their harms. Here we argue that this necessitates a broad scientific research agenda to study

® O Ut Of M IT B Ut machine behaviour that incorporates and expands upon the discipline of computer science and includes insights from
across the sciences. We first outline a set of questions that are fundamental to this emerging field and then explore the

technical, legal and institutional constraints on the study of machine behaviour.

* Lovely web site,
though no changes
since 2019.



* |nvestigates how deep
networks can learn
abstract relational
reasoning. Model
behavior Is evaluated
against human
performance on
analogous cognitive
tasks

ReaS()nan in LLMSLearning to Reason With Relational Abstractions

Andrew J. Nam*!, Mengye Ren*?, Chelsea Finn', James L. McClelland?
IStanford University, 2NYU

December 7, 2022

ADbstract

Large language models have recently shown promising progress in mathematical reasoning
when fine-tuned with human-generated sequences walking through a sequence of solution steps.
However, the solution sequences are not formally structured and the resulting model-generated
sequences may not reflect the kind of systematic reasoning we might expect an expert human to
produce. In this paper, we study how to build stronger reasoning capability in language models
using the idea of relational abstractions. We introduce new types of sequences that more explic-
itly provide an abstract characterization of the transitions through intermediate solution steps
to the goal state. We find that models that are supplied with such sequences as prompts can
solve tasks with a significantly higher accuracy, and models that are trained to produce such se-
quences solve problems better than those that are trained with previously used human-generated
sequences and other baselines. Our work thus takes several steps toward elucidating and im-
proving how language models perform on tasks requiring multi-step mathematical reasoning.



Interpretability

http://arxiv.org/abs/2208.06894 The SVD of Convolutional Weights: A CNN Interpretability
Framework™

° Aware Of Visualisation and Brenda Praggastis' Davis Brown' Carlos Ortiz Marrero? Emilie Purvine'

auralisation of layers and Madelyn Shapiro’ Bei Wang?
We|ghtS August 16, 2022

* |mproves on this using N
fo rmal methOdS from LI near Deep neural networks used for image classification often use convolutional filters to extract

AI ebra distinguishing features before passing them to a linear classifier. Most interpretability literature
g focuses on providing semantic meaning to convolutional filters to explain a model’s reasoning
process and confirm its use of relevant information from the input domain. Fully connected layers

® Ll n kS 'tO |n'te rp ret abl I |'ty but can be studied by decomposing their weight matrices using a singular value decomposition, in

effect studying the correlations between the rows in each matrix to discover the dynamics of

nOt to COntrO”Ing netWO rk the map. In this work we define a singular value decomposition for the weight tensor of a

convolutional layer, which provides an analogous understanding of the correlations between

COnve rgence filters, exposing the dynamics of the convolutional map. We validate our definition using recent
results in random matrix theory. By applying the decomposition across the linear layers of
an image classification network we suggest a framework against which interpretability methods
might be applied using hypergraphs to model class separation. Rather than looking to the
activations to explain the network, we use the singular vectors with the greatest corresponding
singular values for each linear layer to identify those features most important to the network. We
illustrate our approach with examples and introduce the DeepDataProfiler library, the analysis
tool used for this study.



Deep Learning Metrology

Abstract

Random Matrix Theory (RMT) is applied to analyze the weight matrices of Deep Neural
Networks (DNNs), including both production quality, pre-trained models such as AlexNet
and Inception, and smaller models trained from scratch. such as LeNeth and a miniature-
AlexNet., Empirical and theoretical results clearly indicate that the DNN training process
itsclf implicitly implements a form of Self-Regularization, implicitly sculpting a more regu-
larized cnergy or penally landscape. In particular, the empirical spectral density (ESD) ol
DNN laver matrices displays signatures ol traditionally-regularized statistical models, even
in the absence of exogenously specitving traditional forms of explicit regularization, such
as Dropout or Weight Norm constraints. DBuilding on relatively recent results in RMT,
most notably its extension to Universality classes of Heavy-Tailed matrices, and applying
them to these cmpirical results, we develop a theory to identily 5+1 Phases of Training,
corresponding Lo increasing amounts ol Implicil Self-Regularizalion. These phases can be
obscrved during the training process as well as in the final learned DNNs. For smaller
and/or older DNNs, this Implicit Sclf-Regularization is like traditional Tikhonov regular-
ization, in thal there is a “size scale” scparating signal [rom noise. For state-ol-the-art
DNNs, however. we identily a novel [orm of Heavy-Tuiled Self-Regularizalion, similar to
the sell-organizalion seen in the statistical physics ol disordered systems (such as clas-
sical models of actual neural activity). This results from correlations arising at all size
scales, which for DNNs arises implicitly due to the training process itsclf. This implicit
scll-Regularization can depend strongly on the many knobs of the training process. 1n
particular., we demonstirate thal we can cause a small model Lo exhibit all 5+1 phases ol
training simply by changing the batch size. Our resulis suggest that large, well-trained
DNN architectures should exhibit Heavy-Tailed Self-Regularization, and we discuss the
theoretical and practical implications of this.

Journal of Machire Learning Research 22 (2021) 1-73 Submitted 4/20; Publisked 6,21

Implicit Self-Regularization in Deep Neural Networks:
Evidence from Random Matrix Theory
and Implications for Learning

Charles H. Martin CHARLESQCALCULATIONCONSULTING.COM
Calculation Consulting

8§ Locksley Ave, 6B

San Francisco, CA 94122

Michael W. Mahoney MMAHONEY @QSTAT.BERKELEY.EDU
ICST and Department of Statistics

Unwversity of California at Berkeley

Berkeley, CA 94720

Editor: Ohad Shamir

* Distribution of eigenvalues is
heavy tailed in large, well-
trained networks

* Various stages of training
identified by changing
distribution

* Joolbox called ‘weightwatchers’



Discovering functional blocks

https://distill.pub/2020/circuits/curve-circuits/

* Image processing DLs learn
curve detectors (and higher
order function)

* Replace identified, learning
‘circults’ with custom
designed, low-power/
efficient circuits

 Performance is comparable

* Potential for commoditising
DL models

Curve Circuits

We reverse engineer a non-trivial learnec algorithm
from the weights of a neural network and use its core

ideas to craft an artificial artificial neural network from
scratch that reimplements it.

Natural InceptionV1 Curve Neurons Artificial Curve Neurons
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Published as a conterence paper at ICLR 2022

Deep Neural
surgery

FAST MODEL EDITING AT SCALE

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, Christopher D. Manning
Stanford University
eric.mitchelllcs.stanford.edu

https://arxiv.org/abs/2110.11309

“the largest existing models still make
errors”

“Producing such targeted edits [is]
difficult”

“Propose Model Editor Networks with
Gradient Decomposition (MEND)”

"MEND learns to transform the
gradient obtained by standard fine-
tuning, using a low-rank
decomposition of the gradient to
make the parameterization of this
transformation tractable.”

ABSTRACT

While large pre-trained models have enabled impressive results on a variety of
downstream tasks, the largest existing models still make errors, and even accurate
predictions may become outdated over time. Because detecting all such failures at
training time 1s impossible, enabling both developers and end users of such models
to correct inaccurate outputs while leaving the model otherwise intact 1s desirable.
However, the distributed, black-box nature of the representations learned by large
neural networks makes producing such targeted edits difficult. If presented with
only a single problematic input and new desired output, fine-tuning approaches
tend to overfit; other editing algorithms are either computationally infeasible or
simply 1neffective when applied to very large models. To enable easy post-hoc
editing at scale, we propose Model Editor Networks with Gradient Decomposi-
tion (MEND), a collection of small auxiliary editing networks that use a single
desired input-output pair to make fast, local edits to a pre-trained model’s be-
havior. MEND learns to transform the gradient obtained by standard fine-tuning,
using a low-rank decomposition of the gradient to make the parameterization of
this transformation tractable. MEND can be trained on a single GPU in less than
a day even for 10 billion+ parameter models; once trained MEND enables rapid
application of new edits to the pre-trained model. Our experiments with TS, GPT,
BERT, and BART models show that MEND is the only approach to model editing
that effectively edits the behavior of models with more than 10 billion parameters.
Code and data available at https://sites.google.com/view/mend-editing.


https://arxiv.org/abs/2110.11309

Simplifying
computation

Learning Low-rank Deep Neural Networks via Singular Vector Orthogonality
Regularization and Singular Value Sparsification

Huanrui Yang', Minxue Tang®, Wei Wen', Feng Yan®, Daniel Hu*, Ang Li', Hai Li', Yiran Chen'
'Department of Electrical and Computer Engineering, Duke University
*Department of Electronic Engineering, Tsinghua University
SComputer Science and Engineering Department, University of Nevada, Reno
*Newport High School, Bellevue, WA

http://arxiv.org/abs/2004.09031

Abstract

Modern deep neural networks (DNNs) often require high
memory consumption and large computational loads. In or-
der to deploy DNN algorithms efficiently on edge or mo-
bile devices, a series of DNN compression algorithms have
been explored, including [actorization methods. Factoriza-
tion methods approximate the weight matrix of a DNN layer
with the multiplication of two or multiple low-rank matri-
ces. However, it is hard to measure the ranks of DNN layers
during the training process. Previous works mainly induce
low-rank through implicit approximations or via costly sin-
gular value decomposition (SVD) process on every training
step. The former approach usually induces a high accuracy
loss while the latter has a low efficiency. In this work, we
propose SVD training, the first method to explicitly achieve
low-rank DNNs during training without applying SVD on
every step. SVD training first decomposes each laver into
the form of its full-rank SVD, then performs training directly
on the decomposed weights. We add orthogonality regular-
ization fo the singular vectors, which ensure the valid form
of SVD and avoid gradient vanishing/exploding. Low-rank
s encouraged by applying sparsity-inducing regularizers
on the singular values of each layer. Singular value pruning
is applied at the end fo explicitly reach a low-rank model.
We empirically show that SVD training can significantly re-
duce the rank of DNN layers and achieve higher reduction
on computation load under the same accuracy, comparing
10 not only previous factorization methods but also state-of-
the-art filter pruning methods.



Al research harms
the planet

 R. Couillet, D. Trystram and T.
Meénissier, "The Submerged Part of
the Al-Ceberg [Perspectives]," in
IEEE Signal Processing Magazine,
vol. 39, no. 5, pp. 10-17, Sept.
2022, doi: 10.1109/
MSP.2022.3182938.

 Looking at energy consumption
due to Deep Learning

The Submerged Part of the Al-Ceberg

between the exploding energy

demand of artificial intelligence (Al)
and the information and communication
(ICT) industry as a whole and the paral-
lel strong request for energy sobriety
imposed by the need to mitigate the
impact of climate change and the antici-
pated collapse of civilization as we know
it. Under the form of an open reflection
on the goods and evils of Al, the article
raises the suggestion of a drastic change
in the Al paradigm, more in phase with
the vital obligation to design a more
resilient society.

This article discusses the contradiction

Deep learning: The new Eldorado?
Over the past decade, the considerable
growth of the digital world, propelled
by Al, has had spectacular effects in a
few scientific fields, such as computer
vision and natural language processing,
and given rise to many new technolo-
gies and consumer products. Today,
this development even claims to revo-
lutionize many other areas of our soci-
ety. This revolution indeed concerns
many aspects of our lives: we (and

world with a few clicks, to name only a
few [1], [2].

Deep neural network learning is at
the forefront of this development and has
spread rapidly, far beyond the confiden-
tial fields of its beginnings. In a matter of
10 years, this specific computer science
tool—theorized as early as the 1980s
[3]—has reached all levels of society: in
companies, institutions, research labo-
ratories, in virtually all engineering dis-
ciplines as well as life sciences. Easy to
use as a black box thanks to an important
software development effort—multiple
“plug-and-play” solutions have been
developed for engineers (and not only
computer science experts), such as the
popular TensorFlow library [4], [S]—
deep learning has effectively replaced
“conventional” tools (particularly in
computer vision and natural language
processing), imposing a form of radical
monopoly on scientific domains. The
radical monopoly of a tool is understood
in the sense defined by Illich [34]: it
alters the normative system of knowl-
edge generation and sharing. Calls for
projects, dedicated conferences, and job

Romain Couillet, Denis Trystram,
and Thierry Ménissier

world really be on the way [6]? Of
course, investing in deep learning and
Al involves delegating to the machine
the power of our decisions, which comes
with many ethics and equity concerns
[8]; as Stephen Hawking pessimistically
stated in 2014, ““The development of full
artificial intelligence could spell the end
of the human race.... It would take off
on its own, and redesign itself at an ever-
increasing rate. Humans, who are limit-
ed by slow biological evolution, couldn’t
compete, and would be superseded.”
[7] (As discussed next, this seemingly
science-fictional statement 1s more pro-
foundly explored by Illich [34] regard-
ing the dangers of societal dependence
on oil and machines, induced by an
increasing loss of common knowledge
and know-how that are moved from the
population to computers and machines.)
Yet, the many promises of Al clearly
tip the scales toward increasingly more
investment in the field [10]. Besides,
researchers now deeply investigate the
question of fairness in Al to smooth out
these thorny angles [9].
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Agency and Al
Al and Creativity

Human Rights vs the Machine

* Links among algorithmic bias, copyright & ethics

 \Where to draw the line between human & machine in a cyber physical
system?

Do humans benefit by having to learn how to drive a system, thereby
endowing agency??

* |n a vocal percussion system to drive a drum synthesiser... does the system
adapt to the person, or the person to the system?

* In Al song-writing, does the machine suggest rnymes or write lines”?
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My own work
Supported by EPSRC Discipline Hopping Grant

* | was recommended to watch LA + DL lectures by Gilbert Strang. A revelation!
* |’ve hopped from EECS/c4dm to Maths
* 18 month research agenda

 Explore & develop metrics for the internal state of a NN (during training)

* |nitialise NNs using low rank layers

 Modify NN dynamics by tinkering with Singular Values

* Speed up training

 Explore on a Neural Audio model

 Develop a larger research agenda



Conclusions...



Holistic understanding ...

* Artificial MRI
* Linear Algebra, statistical mechanics non-linear dynamics, topology, geometry for
e observing, measuring & understanding learning and inference processes
* Manipulating the learning process to derive more efficient models
 Mechanistic interpretability: exposing emergent structures and neural circuits
 Experimental Artificial Neuroscience & Artificial Cognition

 Beyond benchmarking: developing and testing behavioural hypotheses in ecologically valid
experiments (incl. ablation and “surgery”)

* Designing test data to fully probe behaviours
* Exploring failure modes, not just accuracy

e Curriculum learning, transfer learning, domain adaptation, etc
 Machine Behavioural Science

* Applying social sciences to collective behaviours of multiple Als, Als + humans, role of humanities
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 Explore failure modes
» success/failure is not a binary decision
* |t's where to learn lessons

* Develop artificial cognition experimental procedures to complement
benchmarking

e and relation to Mathematical Neuroscience
» | eading to safer, explainable Al
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* Neural Architecture Search and a new design algebra for semi-automated model
generation and custom implementation

* GPUs are general purpose Al chips! We can do better

* Low rank structures and algorithms for efficient learning and inference
» Relationship with scalability and data set size
» explore other fast matrix-vector techniques

* Custom hardware (incl. 1 bit — well-established in Signal Processing)
* Relationship between 1 bit processing, ‘oversized’ layers & Universality

* Re-engineer identified neural circuits (Mechanistic Interpretability) with purpose-defined
sub-systems (e.g. curve detectors)

* Towards a building block approach to neural networks
* Relationships between circuits and low rank

* Borrow from signal processing for new approaches, but don’t junk CMOS

* virtual analog for digital equivalents to analog models of biological neural circuits:
trainability ~ optimized circuit design

* Non-linear Digital Wave Filters as compact, non-linear, convolutional building blocks in
new, heterogeneous DL models



