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Motivation: Synthetic networks

Padgett’s Florentine marriage network
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Generating and assessing synthetic networks

Motivation: Synthetic networks

Synthetic networks

Synthetitic data are increasingly used in computational statistics and machine
learning, for example for

privacy;
data augmentation;
method development.

One way forward: Set up a parametric model; estimate the parameters; simulate
from the model using the estimated parameters.
Another way forward: Draw samples from the data; simulate from the data using
these samples.
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Synthetic data are easy (?)
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Generating and assessing synthetic networks

Motivation: Synthetic networks

Desirable features of synthetic data generators

faithful to the distribution of topological features of interest in the data;
different enough from the original data to provide variability;
theoretical guarantees to mitigate risk and assess resilience.
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Generating and assessing synthetic networks

Theoretical guarantees: Stein’s method and Stein discrepancies

Stein’s method

Starting point
assess distance between distributions

Typical situation
One distribution is relatively simple, the other distribution
is more complicated, often based on n random elements.

Aim
explicit bounds, which usually depend on n.
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Generating and assessing synthetic networks

Theoretical guarantees: Stein’s method and Stein discrepancies

Stein’s method in a nutshell

For p a target distribution find a Stein operator Ap and a Stein class F(Ap): if X ∼ p

EApf (X ) = 0 for all f ∈ F(Ap) (Stein characterisation)

For h ∈ H a large function class find f = fh ∈ F(Ap) solving

h(x)− Eh(X ) = Apf (x) (Stein equation).

Then for any random element W , h ∈ H

Eh(W )− Eh(X ) = EApf (W ).
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Generating and assessing synthetic networks

Theoretical guarantees: Stein’s method and Stein discrepancies

Stein discrepancies

If X ≈ W in distribution and if Ap is a Stein operator for X then, intuitively
E[Apg(W )] ≈ 0 for all sufficiently regular functions g .

Gorham and Mackey (2017); Chwialkowski et al. 2016, Liu et al. 2017
Let H be a reproducing kernel Hilbert space (RKHS) associated with kernel k , inner
product ⟨·, ·⟩ and unit ball B1(H).

Let Y ∼ q. The kernel Stein discrepancy (KSD) between p and q is

KSD(p, q; k) = sup
f ∈B1(H)

|E[Apf (Y )]|.
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Stein’s method to characterise exponential random graph models

Exponential random graph models

Exponential random graph models
are often used for social networks.
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Graphs Glab
n : simple, undirected, n labelled vertices, described by

x = (xi ,j) ∈ {0, 1}(
n
2); 1 ≤ i < j ≤ n;

xi ,j = 1 if there is an edge between vertices i and j .
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Generating and assessing synthetic networks

Stein’s method to characterise exponential random graph models

Fix t1, . . . , tk which are scaled counts of subgraphs of Glab
n ; t1(x) is the number of

edges in the graph x .

The random graph X ∈ Glab
n follows the exponential random graph model (ERGM) with

parameters β = (β1, . . . , βk) ∈ Rk if for x ∈ Glab
n ,

P(X = x) =
1

κn(β)
exp

(
k∑

ℓ=1

βℓtℓ(x)

)
,

where κn(β) is a normalizing constant. The normalizing constant is usually intractable.

If k = 1: ER graph G(n, p) with independent edges having probability

p = e2β1/(1 + e2β1).
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Stein’s method to characterise exponential random graph models

A Stein operator

Glauber dynamics: Each pair of vertices s has an in-
dependent exponentially distributed clock.

1

2

3

4

5

6

When it rings for s, we resample the edge indicator at vertex pair s according to the
conditional probability of an edge at s, given the rest of the network.

Notation:
x (s,1) is x with s = 1;

x (s,0) is x with s = 0;

x−(s) is x without xs .

For a function h : {0, 1}N → R let ∆sh(x) = h(x (s,1))− h(x (s,0)).

June 9, 2025 Generating and assessing synthetic networks 16



Generating and assessing synthetic networks

Stein’s method to characterise exponential random graph models

The transition probability

For a vertex pair s, the conditional probability of an edge at s in the ERGM given the
rest of the network is

qβ(x
(s,1)|x−(s)) =

exp
{∑k

ℓ=1 βℓtℓ(x
(s,1))

}
exp

{∑k
ℓ=1 βℓtℓ(x

(s,1))
}
+ exp

{∑k
ℓ=1 βℓtℓ(x

(s,0))
}

which simplies to
q(x (s,1)|∆stℓ(x), ℓ = 1, . . . , k).

Only the changes in counts relative to s need to be computed.
For a G(n, p) random graph we have q(x (s,1)|x−(s)) = p.
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Stein’s method to characterise exponential random graph models

Stein operator
The generator Aβ of this Markov process on Gn is

Aβf (x) =
1
N

∑
s∈[N]

[
qβ(x

(s,1)|x−(s))(f (x (s,1))− f (x))

+(1 − qβ(x
(s,1)|x−(s)))(f (x (s,0))− f (x))

]
=

1
N

∑
s∈[N]

[
qβ(x

(s,1)|x−(s))∆s f (x) +
(
f (x (s,0))− f (x)

)]
.

This is a Stein operator as for X following the corresponding ERGM model,

EAβf (X ) = 0.
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Generating and assessing synthetic networks

Stein’s method to characterise exponential random graph models

Chatterjee and Diaconis (2013) showed that in some regime, ERGMs with tℓ counting
subgraphs Hℓ with Ee ll edges are asymptotically close to G(n, p). Let eℓ be the number
of edges of Hℓ. Key functions on [0, 1]:

Φ(a) =
k∑

ℓ=1

βℓeℓa
eℓ−1; |Φ(a)| :=

k∑
ℓ=1

|βℓ| eℓ aeℓ−1; ϕ(a) =
e2Φ(a)

e2Φ(a) + 1
.

Assumption A: 1
2 |Φ

′|(1) < 1 and a∗ ∈ [0, 1] satisfies a∗ = ϕ(a∗)

The so-called subcritical regime regime relates to the large deviation behaviour of ER
random graphs. For Ising models: high temperature regime.

In R. and Ross (2019) we bound the distance by comparing their Stein operators.
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Generating and assessing synthetic networks

Stein’s method for assessing goodness of fit to an ERGM

Goodness of fit to an ERGM

The ERGM likelihood has intractable normalizing constant.

Only one network is observed.

We can simulate from a given ERGM.

For assessing goodness of fit the standard
approach (Hunter et al. 2008) are Monte
Carlo tests based on a collection of edge
based statistics. 0 1 2 3 4 5 6 7 8 9
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Goodness−of−fit diagnostics

Lospinoso and Snijders 2019 use the Mahalanobis distance between these statistics.
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Stein’s method for assessing goodness of fit to an ERGM

The graph kernel Stein statistic

(R. and Xu 2021) Based on our ERGM(β) Stein operator

Aβf (x) =
1
N

∑
s∈[N]

[
qβ(x

(s,1)|x−(s))∆s f (x) + f (x (s,0))− f (x)
]

we define the graph kernel Stein statistic for a network x as

gKSS(β, x) = sup
f ∈B1(H)

|EAβf (x)|.

Here H is a RKHS. We can calculate this supremum explicitly using the RKHS
properties.
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Stein’s method for assessing goodness of fit to an ERGM

Theoretical guarantees

Under Assumption A, ERGM(β) ≈ G(n, a∗).

Then gKSS(β, x) ≈ gKSS for G(n, a∗).

In G(n, a∗) the edge indicators are independent. Under additional assumptions, for
G(n, a∗), √

ngKSS2 is approximately normal

with mean and variance functions of the kernel k .

Stein’s method gives explicit bounds on these approximations.

We simulate networks from the null distribution and assess how much the observed
statistic differs from the simulated statistics.
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Stein’s method for assessing goodness of fit to an ERGM

Examples

Lazega’s lawyer network (Lazega, 2001) con-
sists of a network between 36 laywers; Laze-
ga suggests an ER model
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A Glasgow friendship network of 50 secondary school students (Steglich et al., 2006)

We fit
An ER G(n, p) with p the maximum likelihood estimate
an E2ST model with edges, 2-stars and triangles,
An ER G(n, a∗) with a∗ calculated from the E2ST fit.
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Stein’s method for assessing goodness of fit to an ERGM

n ER (mle) E2ST ER(a∗)
Lawyer 36 0.280 0.012 0.152

Teenager 50 0.016 0.060 0.336
Florentine 16 0.52 0.16 0.43

Red: rejected at 5 % level; 100 samples to simulate the null distribution

ER may be rejected whereas ER(a∗) may be accepted.

Florentine marriage network: The MLE is 1/6 = 0.1667 while a∗ = 0.1737 when
estimated from the E2ST model.
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Generating and assessing synthetic networks

Assessing the quality of graph generators

Assessing the quality of graph generators
Suppose a synthetic network generator generates samples which are meant to come
from the same distribution of that of an observed network, without knowing that
distribution.

How can we assess the quality of the implicit graph generator?

G( generate ...
Training
Samples )
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Generating and assessing synthetic networks

Assessing the quality of graph generators

Idea

Use the synthetic networks to estimate the marginal transition probabilities of a
Glauber-type Markov chain starting from the initial network, using summary statistics t,
which do not have to be sufficient statistics.

We then construct a Stein operator based on the estimated marginal transition
probabilities.

From the Stein operator we can construct a kernelised goodness of fit test which we
call AgraSSt.

With this test statistic we can test whether the observed network comes from the
distribution which underlies the synthetic data generator.
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Generating and assessing synthetic networks

Assessing the quality of graph generators

Assessing synthetic graph generators

GraphRNN (You et al. 2018) is an architecture to generate graphs from learning
two recurrent neural networks (RNNs), one a vertex-level RNN and the other an
edge-level RNN.
NetGAN (Bojchevski et al. 2018) utilises an adversarial approach by training an
interplay between a generator and a discriminator neural network on graph data.
CELL (Rendsburg et al. 2020) improves on NetGAN idea by solving a low-rank
approximation problem based on a cross-entropy objective.
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Assessing the quality of graph generators

Statistics for model assessment

Deg (Ouadah et al. 2020) is a degree-based statistics for goodness-of-fit testing of
exchangeable random graphs based on the estimated variance of the degree
distribution.
TV_deg denotes the total variation distance between degree distributions.
MDdeg is the Mahalanobis distance between degree distributions.
AgraSSt with t(x (s)) the edge density of x (s).
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Assessing the quality of graph generators

Example: Florentine marriage network

AgraSSt Deg MDdeg TV_deg density
GraphRNN 0.01 0.11 0.26 0.03 0.188
NetGAN 0.16 0.18 0.09 0.06 0.176
CELL 0.23 0.36 0.69 0.18 0.165

p-values for models trained from the Florentine marriage network; 100 samples to
simulate the null distribution; rejected null at significance level α = 0.05 is marked red.

Florentine marriage network: edge density 0.167
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Stein’s method for generating fidelitous and diverse networks
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Generating and assessing synthetic networks

Stein’s method for generating fidelitous and diverse networks

Idea

A distribution can be characterised by a Stein operator.

Why not use the Stein operator to generate synthetic networks?

The Stein operator can often be interpreted as transition operator of a Markov process
with target distribution as stationary distribution.

Make an initial estimate of the Stein operator from the data.

Use the Markov process to generate a new sample.

Re-estimate the Stein operator from the new sample.

Iterate.
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Stein’s method for generating fidelitous and diverse networks

The SteinGen method

q̂(k) is the (re-)estimated conditional probability based on the current graph xk−1;
Glauber dynamics using q̂(k) on the current xk−1 generates the next graph sample xk .
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Stein’s method for generating fidelitous and diverse networks

We compare against ...

samples generated using an ERGM with parameters estimated by MPLE, a
maximum pseudo-likelihood estimator from Schmid and Desmarais (2017);
samples generated using an ERGM with parameters estimated by CD, an estimator
based on a local approximation of the gradient of the log likelihood near the
observed data, by Asuncion et al. 2010;
CELL, Rendsburg et al. 2020;
Stein_nr, a SteinGen version which estimates the target only once and then
proceeds via Gibbs sampling.
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Stein’s method for generating fidelitous and diverse networks

Real-world data:Teenager friendship network

We use the Glasgow teenager friendship net-
work of 50 secondary school students (Steg-
lich et al. 2006).
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Three evaluations:

1. Proportion of rejections of the AgraSSt goodness-of-fit test;
2. Hamming distance to the original network;
3. standard summary statistics.
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Stein’s method for generating fidelitous and diverse networks

Density 2Stars Triangles AgraSSt Hamming
MPLE 0.0421 (2.42e-2) 329 (80.4) 75.52 (43.4) 0.68 0.106 (2.22e-2)
CD 0.2900 (1.10e-2) 4537 (538) 4146 (668) 0.92 0.211 (1.03e-2)

CELL 0.0450 (3.46e-4) 220 (14.1) 22.50 (7.73) 0.12 0.0423 (3.32e-3)
NetGAN 0.1120 (1.38e-6) 227 (13.3) 9.28 (2.53) 0.34 0.0820 (5.07e-3)

SteinGen_nr 0.0516 (1.02e-3) 362 (14.9) 88.90 (24.8) 0.06 0.0912 (9.95e-3)
SteinGen 0.0445 (9.49e-4) 364 (84.1) 85.75 (10.7) 0.08 0.107 (1.32e-2)
Teenager 0.0458 368 86.00 pval=0.64
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Stein’s method for generating fidelitous and diverse networks

Fidelity: how well can we do?

dTV (G
(1),G (2)) =

1
2

n−1∑
k=0

∣∣∣∣∣1n
n∑

v=1

1(deg(1)(v) = k)− 1
n

n∑
v=1

1(deg(2)(v) = k)

∣∣∣∣∣
For r generated networks G (i), i = 1, . . . , r and G (0) the observed network, for G(n, p)
we can show that approximately,

1
r

r∑
i=1

EdTV (G (0),G (i)) ∈

[
4p(1 − p)

√
1
nπ

,

√
1
nπ

]
.
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Stein’s method for generating fidelitous and diverse networks

Comparing realisations to the input network
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Stein’s method for generating fidelitous and diverse networks

More on SteinGen behaviour

The SteinGen method with re-estimation gives a Markov chain.

Its absorbing states are the full and the empty graph.

Eventually it will converge to one of these states, and SteinGen fails.

Stein_nr (Gibbs sampling after initial transition probability estimation) does not have
this issue.

June 9, 2025 Generating and assessing synthetic networks 40



Generating and assessing synthetic networks

Stein’s method for generating fidelitous and diverse networks
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Florentine family network, Bernoulli model; n = 16,N = 120
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Stein’s method for generating fidelitous and diverse networks
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Some discussion and future directions

Beyond networks

AgraSST can be extended to d-dimensional continuous distributions (Xu and R. 2022).
We call it NP-KSD for non-parametric kernel Stein discrepancy.

Suppose we have a collection of conditional probabilities for the d one-dimensional
marginals (which we could estimate via relative frequencies).

Each conditional distribution gives rise to a conditional Stein operator.

Summing over the conditional Stein operators gives a Stein operator for the distribution.

With a Stein operator, we can define a kernelised Stein statistic for testing.

Future: use this idea also for synthetic data generation.
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Some discussion and future directions

Using Stein’s method...

We used Stein’s method to
characterise a network distribution;
devise a kernelised goodness of fit test;
assess the quality of synthetic network generators;
generate synthetic data;
... and give theoretical guarantees (not shown).
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Some discussion and future directions

Work in progress:
Other models for random networks (Fatima + R. 2025);
network time series.

Future work:
Include node and edge attributes;
hypergraph time series (allowing for hyperedges having more than 2 nodes);
scaling properties;
general point clouds.
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Some discussion and future directions
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