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DRUG DISCOVERY IS A HARD PROBLEM 

(BUT AN IMPORTANT ONE)
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THE IMMENSE POTENTIAL OF AI LEADS TO A RISK OF 

OVER-PROMISING RESULTS TO CUSTOMERS AND INVESTORS

Recent builder.ai insolvency: reported problems include using hundreds 

of real programmers pretending to be AI models.



Lack of expertise in either 

statistical methods or drug 

discovery can lead to 

mistakes.

We can only make progress 

by bridging this gap, and 

avoiding hype.

1. Assessing new methods

2. Awareness of dataset 

biases

3. Do we have sufficient 

information?
Image source: Google Gemini



DATA REPRESENTATION

➢Preclinical models tend to use representations of the 

structure or connectivity of atoms in a drug molecule. For 

‘structure based’ methods, the structure or sequence of 

amino acids in a protein is also required.

➢We usually need to end up with a vector representation of 

our physical system, e.g.

➢ one-hot encoded atom environments: “fingerprints”

➢ amino acid sequence or interaction counts or fingerprints

➢ description of shape and property distributions: inertial tensors, 
spherical harmonics, persistent homology approaches

➢ embeddings of graphs, latent space of autoencoders, principal 
components

Crystal structure of 1KYN 

protein (red/white) and small 

molecule inhibitor (blue)



1. ASSESSING THE EFFECTIVENESS OF NEW METHODS

1.1 PoseBusters: AI-based docking fails to generate valid poses or 

generalise to novel sequences. 

1.2 Are the results too good to be true? MUV

1.3 Are the results too good to be true? Co-crystallization



1.1 POSEBUSTERS: SOME DL MOLECULAR DOCKING METHODS 

FROM THE LITERATURE

Method Description

DeepDock Learns a statistical potential based on the distance likelihood between ligand atoms 

and points of the mesh of the surface of the binding pocket (protein). 

DiffDock Equivariant graph neural networks in a diffusion process for blind docking.

EquiBind Equivariant graph neural networks for blind docking. 

TankBind Blind docking method using a trigonometry-aware neural network for docking in 

each pocket predicted by a binding pocket prediction method.

Uni-Mol Docking with SE3-equivariant transformers

“state-of-the-art performance in terms of RMSD of atom positions in a docked 

molecule to experimentally measured positions in a crystal structure”

Buttenschoen, Morris and  Deane Chem. Sci., 2024,15, 3130-3139 



1.1 POSEBUSTERS: THE PROBLEM

“However, despite claims of state-

of-the-art performance … it has 

become apparent that they often 

produce physically implausible 

molecular structures.”

Martin Buttenschoen, Garrett M. 

Morris and  Charlotte M. Deane 

Chem. Sci., 2024,15, 3130-3139 



1.1 POSEBUSTERS: THE RESULTS

“We show that both in terms of physical plausibility and the ability to 

generalise to examples that are distinct from the training data, no deep 

learning-based method yet outperforms classical docking tools. In addition, 

we find that molecular mechanics force fields contain docking-relevant 

physics missing from deep-learning methods.”

“It is vital, particularly for deep learning-based methods, that they are also 

evaluated on steric and energetic criteria.” 



1.2 DEEP LEARNING THE MUV DATASET: PUBLISHED RESULTS

A deep learning method with convolutional layers, 

biformer network and novel training strategy was 

published in a journal in the Nature portfolio recently.

This caught Alex’s attention because its performance on a 

well known ‘medium difficulty’ drug molecule activity 

classification dataset (MUV) has a ROC AUC of > 0.99. 

This places it “among the top-performing models” in the 

field. (Next best is Trimnet with ROC AUC of 0.851).

Alex Tanaka

Doctoral Student

and dataset sleuth



1.2 DEEP LEARNING THE MUV DATASET: THE PROBLEM

The code and data is available. Alex determined that the metric used to compute 

ROC AUC was “not standard” for a binary classification problem, enabling apparently 

amazing performance from a model with little to no predictive skill at all. 

Investigation is ongoing. The correct ROC AUC for several targets tested so far is not 

so impressive.



1.3 DRUG FORMULATION VIA CO-CRYSTALLIZATION

➢Published CNN model

➢Model trained to classify likelihood of pairs of 

molecules forming a co-crystal, in which both molecules 

are incorporated, using experimental results

➢Novel data representation: Data presented as images 

containing 2D chemical diagrams of both potential 

component molecules

➢ROC AUC :0.925



1.3 DRUG FORMULATION VIA CO-CRYSTALLIZATION – SOME 

PROBLEMS

Data augmentation was used to correct a class 

imbalance. Rotated copies of images were used to 

augment the positive class. Image (right) is typical. 

Black background is easy to detect.

Data processing script did 10-fold cross validation 

(good) but did not clear out working folder in-between 

folds (bad). First fold always worse than the rest (due 

to leakage of test set information).



1. CAREFUL ASSESSMENT OF RESULTS IS CRITICAL ESPECIALLY 

RELATIVE TO EXISTING BASELINES

Posebusters paper shows that optimising and assessing on RMSD alone can lead to 

unphysical results. Problem domain knowledge required. ‘Correct’ results no better than 

classical methods.

The deep learning results for MUV show the importance of reviewing code, and also of 

demanding a high standard of proof for surprisingly good results. Methods knowledge 

required.

The co-crystallization analysis revealed data leakage during model training (intermediate 

files left behind) and unintentional biasing of the positive class due to the data 

augmentation procedure. Methods knowledge required.



2. WHAT IS THIS DATASET FOR? AWARENESS OF BIAS

2.1 The Directory of Useful Decoys (extended) (DUD-E): A frequently 

misused dataset for docking

2.2 CASF2016: Training bias: Have you seen this protein before?



2.1 THE DIRECTORY OF USEFUL DECOYS – ENHANCED (DUD-E)

➢ DUD-E is designed to help benchmark molecular docking programs by 

providing challenging decoys. 

➢ 22,886 active molecules and their affinities against 102 targets, an 

average of 224 ligands per target

➢ 50 decoy molecules for each active, having similar physico-chemical 

properties but dissimilar 2-D topology

Latest version is DUDE-Z (DUD-E for Gen Z)



2.1 DUD-E IS A TEMPTING CHOICE FOR ML/AI CLASSIFICATION 

TASKS BECAUSE THERE IS SO MUCH DATA

And – it gives results that appear amazing:

“Using a clustered cross-validation on DUD-E, we 

achieve an average AUC ROC of 0.92 and a 0.5% ROC 

enrichment factor of 79.”



2.1 BUT … DUD-E USED MOLECULAR FINGERPRINTS TO SELECT ITS “DECOY” 

MOLECULES, WHICH ENABLES EASY CLASSIFICATION USING MOLECULAR 

FINGERPRINT METHODS

➢The DUD-E and DUDE-Z (DUD-E for Gen Z) websites say: “designed for 3D 

molecular screening methods such as docking and not for 2D methods such as 

molecular similarity based methods”

➢See “Hidden bias in the DUD-E dataset leads to misleading performance of deep 

learning in structure-based virtual screening” Lieyang Chen et al. PLOS, 2019 

https://doi.org/10.1371/journal.pone.0220113. A good number of examples of 

DUD-E misuse – primarily CNNs, but principle applies to any models that capture 

atomic environment in any way.



2.2 CASF* 2016 TASK: PREDICT THE AFFINITY OF A SMALL 

MOLECULE LIGAND BINDING TO A PROTEIN STRUCTURE

* comparative assessment of scoring functions

Binding affinity can be estimated from the 3D 

coordinates of a ligand bound to a protein 

using a scoring function.  This estimate can 

guide lead discovery and optimization tasks. 

Scoring functions are usually simple functions 

of physical interactions but may still be 

competitive with more rigorous physics-based 

methods.

CASF-2016 defines 285 curated protein-ligand 

complexes as the ‘test set’

Improving protein-ligand docking results using the 

Semiempirical quantum mechanics: testing on the 

PDBbind 2016 core set Zainab Mohebbinia et al. 

https://doi.org/10.1080/07391102.2023.2299742



2.2 CASF 2016 PROBLEMS: MANY METHODS USE THE REST OF THE 

PDBBIND REFINED SET AS TRAINING DATA

After some filtering, and removal of the test set complexes, 4638 complexes remain 

in the PDB ‘refined’ set for use as training data, but…

➢102 complexes (2.1%) have identical small molecule inhibitors

➢994 complexes (21%) have identical protein sequence to test set proteins

➢1498 complexes (32%) have > 90% sequence similarity

Knowledge of the approximate binding affinity in one third of cases gives a huge 

boost in model performance.



2.2 OXFORD DRUG DESIGN DE-DUPLICATED CASF TRAINING DATA IS 

MUCH MORE CHALLENGING*

➢ Complexes with protein sequence identity > 90% to any 

sequence in test set removed

➢ Complexes containing ligands identical to ligands in test set were 

also removed.

➢ 2500 training complexes remain in de-biased training set

Dr Marco Albanese

Computational Chemist

Affinity prediction using OnionNet

implementation

RMSE Pearson’s R

Refined set (test set removed) 1.28 0.82

Our de-biased data set 1.68 0.63

* “More challenging” = more opportunity for genuinely measuring progress



2. DATASET BIASES

DUD-E is not designed to be used for machine learning / deep learning methods. 

Domain knowledge required.

CASF2016 the test set has high similarity to much of the default training set. Careful 

filtering is required to de-bias.

De-biasing to produce more challenging datasets produces worse headline results. 

This is unfortunate in a short attention-span world, however no progress can be 

made without testing models against even modestly difficult datasets.



3. BE SCEPTICAL OF THE HYPE. AND OF LEARNING THINGS THAT 

CAN'T BE LEARNED.

3.1 AI discovers novel antibiotic

3.2 What is GenAI doing for discovery?

3.3 How to help the model: Physical constraints enforce reality



3.1 AI DISCOVERS NOVEL ANTIBIOTIC?

A deep learning approach to antibiotic discovery, Stokes at el., Cell 2020, 

180, 688

1. Message passing NN

2. Trained on antibacterial activity of FDA 

approved drugs and natural product 

library 

3. Predicted activity of compounds in the 

Drug Repurposing Hub database

4. 51 actives identified, one compound, 

Halicin, selected for detailed study



3.1 AI DISCOVERS NOVEL ANTIBIOTIC?

OR AI GETS LUCKY?

Halicin

• Novel mode of action

• No related chemotypes (similar chemical structure)

• Sulfur is present in 31% of actives and 14% of inactives in training data

• If -lactams are removed from training, sulfur is only present in 10% actives and 13% 
inactives and Halicin is no longer predicted to be active

• Although Halicin is active, its classification as such seems to be artefactual. There is no 
information in the dataset to support the activity of the proposed structure. 

See Jagdev, Madsen & Finn, J Mol Model. 2022, 29, 22



3.2 THERE IS A TENDENCY TO FRAME RESULTS AS “DISRUPTIVE” OR 

“REVOLUTIONARY”



3.2 GENERATIVE AI CREATES NOVEL MOLECULES SAMPLED FROM 

THE CHEMICAL SPACE OF ITS TRAINING DATA

E.g. GENTRL: Deep generative model, generative tensorial 
reinforcement learning. “GENTRL optimizes synthetic 
feasibility, novelty, and biological activity”.

• Four compounds were active in biochemical assays

• Two were validated in cell-based assays

Workflow item Compounds

GENTRL 30,000

Property filters 12,147

Med Chem filters 7,912

Tanimoto diversity filter 5,542

Commercial analogue 

filter

4,642

Kinase SOM filter 1,951

Pharmacophore VS 848

Sammon mapping 40

Synthetic accessibility 6

1

2

IC50 (nM)

Compound DDR1 DDR2

1 10 234

2 21 76

ponatinib

[Aside: The similarity of Compound 1 with ponatinib has been noted…]



3.2 BUT SYNTHETIC ACCESSIBILITY IS NOT A PRIORITY FOR GEN AI OUTPUTS

This pattern is seen for other generative drug discovery methods

Generative AI publication Molecules 

generated

Molecules 

synthesized

“Deep learning enables rapid identification of potent DDR1 kinase inhibitors” 

Zhavoronkov et. al., Nature Biotechnology 2019, 37, 1038-1040

30,000 6

“Discovery of Pyrazolo[3,4-d]pyridazinone derivatives as Selective DDR1 

Inhibitors via Deep Learning Based Design, Synthesis, and Biological Evaluation” 

Tan et al., J Med Chem 2022, 65, 1, 103-119

19,929 2

“Design and Synthesis of DDR1 Inhibitors with a Desired Pharmacophore Using 

Deep Generative Models” Yoshimori et al., ChemMedChem 2020, 16, 6, 955-958

570,542 9

“PCW-A1001, AI-assisted de novo design approach to design a selective inhibitor 

for FLT-3(D835Y) in acute myeloid leukemia” Jang et al., Front Mol Biosci 2022, 9

10,416 1

“AlphaFold accelerates artificial intelligence powered drug discovery: efficient 

discovery of a novel CDK20 small molecule inhibitor” Ren et al., Chem Sci. 2023, 

14, 1443-1452

8,918 7

“Accelerating drug target inhibitor discovery with a deep generative foundation 

model” Chenthamarakshan et al., Sci Advances 2023, 9, 25

875,000 4



3.3 USE PHYSICAL CONSTRAINTS TO ENFORCE REALITY (OXFORD 

DRUG DESIGN INTERNAL PROJECT)

1. Generate multiple 

synthesis routes to 

a target molecule

2. Get lists of available 

reactants that can 

be substituted at 

each node

3. Search the reactant 

space to optimize a 

property of the 

product (Bayesian 

Optimization)
Target molecule

Commercially 

available molecule

Commercially 

available molecule

Commercially 

available molecule



• Basis vectors of reactant chemical space derived 
from in-house shape descriptor

• Reactant molecules with similar shape and charge 
distributions are close together 

• Bayesian Optimization exploits similarity and 
explores to find new active clusters

• GP model retrained at each step

• ALL PRODUCTS CAN BE SYNTHESIZED

3.3 SEARCH THE REACTANT PROPERTY SPACE 



3.3 CONSTRAINED BAYESIAN SEARCH CONVERGES RAPIDLY IN 

LARGE COMBINATORIAL CHEMICAL SPACE

pdb 3TGS: HIV-1 clade C strain C1086 

gp120 core in complex with NBD-556

Rapid docking using Lin_F9 empirical scoring function.

Secondary objectives / pareto front calculation to be 

determined.



3. HYPE AND LEARNING THE UNLEARNABLE

The Halicin example shows that it is still possible to stumble upon good molecules 

without robust predictive models. An “anecdote vs data” problem.

Generative methods are impressive, but may have a synthesizability problem. How to 

compare 6 molecules filtered from GenAI output to 6 molecules filtered from a 

library of millions of commercially available molecules?

One solution is to design the search process around the physical task – synthesizing 

molecules – to guarantee that molcules can be made.



SUMMARY

➢ Don’t believe the hype (without verifying it for yourself)

➢ Suggest domain specialists / AI specialists to balance peer review

➢ Insist on reporting results against more challenging datasets

➢ Be suspicious of missing code or data

➢ Check for unexpected biases

➢ Always compare to baseline models

➢ Use explainable models (and take time to look at them)



OPPORTUNITIES FOR AI IN PRECLINICAL DRUG DISCOVERY AND 

DEVELOPMENT

To make progress we need:

➢ Inter-disciplinary collaboration

➢ Transparent approaches to dataset preparation and splitting

➢ Challenging (and problem appropriate) datasets

➢ Rigorous model intercomparison projects

➢ Cross-validation

➢ Explainable models

➢ Improved representations of molecular flexibility and intermolecular interactions



CHAT OR COLLABORATE WITH OXFORD DRUG DESIGN

We are always keen to discuss and collaborate on methods 

development and projects in preclinical drug discovery. We 

have in-house resources to help:

- de-biased public datasets for virtual screening and 

binding affinity prediction

- (confidential) data from real in-house drug development 

programmes

- computational tools and molecule catalogues

Contacts: richard.cooper@oxforddrugdesign.com 

and aras.asaad@oxforddrugdesign.com


