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“Symmetry, as wide or as narrow as you
may define its meaning, is one idea by
which man through the ages has tried to

comprehend and create order, beauty, and

perfection”

Weyl 1952



Portrait: Thor Gorskyi
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The Erlangen Programme

Geometry = space + transformation group

Klein 1872

Vergleichende Betrachtungen

iber

nenere geometrische Forschungen

von

Dr. Felix Klein,
o. b. Professor der Mathematik sn der Universitét Erlangen.

zum Eintritt in die philosophische Facultdt und den Senat
der k. Friedrich-Alexanders-Universitit
zu Erlangen.

Erlangen

Verlag von Andreas Deichert
1872.

F. Klein

1872



Euclidean geometry

R L

Translation Rotation Reflection

Klein 1872



H. Poincaré H. Minkowski E. Noether

1904 1907 1918 1929 1954

Poincaré 1904; Noether 1918; Weyl 1929; Yang & Mills 1954; Portraits: Thor Gorskyi



External symmetry Internal symmetry



“It is only slightly overstating the
case to say that Physics is the study of
symmetry”

— More is different P. Anderson

Anderson 1972
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eometric D
Learning




Supervised ML = Function Approximation

—> |cat,dog}




Supervised ML = Function Approximation

F. Rosenblatt

Rosenblatt 1957; Portrait: Thor Gorskyi



Universal Approximation
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“2-layer perceptron
= can approximate a
continuous function

Multi-layer to any desired
Perceptron  accuracy”

ey

Universal Approximation: Hilbert’s 13t problem 1900; Kolmogorov 1956; Arnold 1957; Cybenko 1989; Hornik 1991; Barron 1993; Leshno et al 1993;
Maiorov 1999; Pinkus 1999
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Geometric priors
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Geometric priors

Signals X' ()

Domain
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Geometric priors

Signals X (1)

gx= [ =V

Domain

“How f interacts with the group G?”



Geometric priors: Invariance

Signals X (1)

e C-—ﬂ g.x—> f I— “cat”
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Symmetries of the Label Function
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Symmetries of the Label Function
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Symmetries of the Label Function




Symmetries of the Label Function




First “geometric” machine learning

==Perceptrons

1969

Minsky, Papert 1969



First “geometric” machine learning

Group Invariance Theorem: "if a
neural network is invariant to a group,
then its output can be expressed as
functions of the orbits of the group”

M. Minsky S. Papert

Minsky, Papert 1969



Canonisation

Mikolajczyk, Schmid 2004



Canonisation

canonisation




Canonisation

“lennifer”




Canonisation

“lennifer”




Canonisation

“lennifer” ?
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Geometric priors: Equivariance

Signals X' (Q)

4@

Domain Q f(p(g)x) — P(g)f(X)
Vg € G

Signals X' (Q)
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Domain

p(G)
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Equivariance = Symmetry-consistent generalisation

A flpr (@A) =py(g9)

f(p1(g)&) = p,(g)

P1 (Q)A/ feature space

input space



Equivariance = Symmetry-consistent generalisation
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P1 (Q)A/ feature space

input space

f(p1(g)A) = p,(g)

f(p1(g)&) = p,(g)




Early Geometric Architectures

Electrical signal
from brain

Recording electrode ——»

Visual area
of brain

Q Stimulus

D. Hubel T. Wiesel

1959

Hubel, Wiesel 1959, 1962; Portraits: Thor Gorskyi



Early Geometric Architectures

Electrical signal
from brain

Recording electrode ——.

Visual area
of brain

D=\

Stimulus

K. Fukushima

Hubel, Wiesel 1959, 1962; Fukushima 1980; Portraits: Thor Gorskyi



Early Geometric Architectures

D. Hubel T. Wi’esel

Hubel, Wiesel 1959, 1962; Fukushima 1980; LeCun et al. 1989; Portraits: Thor Gorskyi



Convolutional Neural Networks

LeCun et al. 1989



Convolutional Neural Networks

LeCun et al. 1989



Convolutional Neural Networks

Locality + Shared parameters

LeCun et al. 1989



Convolutional Neural Networks

weight matrix

Locality + Shared parameters

LeCun et al. 1989
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Permutation Invariance

“properties of a molecule do not change if we reorder the atoms”



Graph Neural Networks

T

Locality + Shared parameters
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Graph Neural Networks

(I TrIrrrrr11ol

Permutation-

equivariant layer



Graph Neural Networks
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Permutation-

equivariant layer



Graph Neural Networks

Permutation-

invariant readout



Graph Neural Networks

), —>

Permutation-

invariant readout



Graph Neural Networks

Graph ¢ = (V,E) Node features X () Functions T(X(G))

Permutation group S, Permutation matrix P Message passing

PX = (x,-10),) F(PX,PAPT) = PF(X,A)



Grids Graphs

Translation Permutation Local Rotation



+ T(2) = CNN

B et al 2017; 2021









+ SO(2) = MeshCNN

B et al 2017; 2021



Euclidean (extrinsic) Geometric (intrinsic)
convolution convolution

Masci et B 2015; Monti et B 2017
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Snap Acquires Ariel Al To Enhance AR Features
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MaSIF: Geometric ML for Protein Function Prediction & Design

nature.com/nmeth February 2020 Vol. 17 No. 2

nature methods
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External symmetry Internal symmetry



SO(3)-invariance

el
s

“properties of a molecule do not change if we rotate it”




Geometric (“Equivariant”) Graph Neural Networks

Geometric Graph G Node features X (G) Functions T(X(G))

Permutation group S, Permutation matrix P Geometric message passing

“domain symmetry” Rotation R F(PXR, PAPT) = PF(X,A)R
“data symmetry”



Revolution in Structural Biology

SARS-CoV-2 s
What will it do

Theinternational journal of science /26 August 2021
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Deeplea ely folds proteins p.&71

Jumper et al. 2021 Baek et al. 2021

AlphaFold 2 RosettaFold
“Invariant point SE(3)-equivariant
attention” Transformer
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The Bitter Lesson: Equivariance is dead...long live equivariance!

=Y

Equivariance is the idea of giving a model the inductive biases to natively handle rotations, translations and
(sometimes) reflections. It has been at the core of Geometric Deep Learning and biomolecular modelling
research since AlphaFold 2. However, recent works by top labs have questioned the existing mantra.

e The first shots were fired by Apple, with a paper that obtained SOTA

Thomas Kipf &

results on predicting the 3D structures of small molecules using a @ @tkipf
non-equivariant diffusion model with a transformer encoder.
e Remarkably, the authors showed that using the domain-agnostic model

"We [...] empirically show that explicitly enforcing roto-translation
equivariance is not a strong requirement for generalization."

"Furthermore, we also show that approaches that do not explicitly

did not deleteriously impact generalization and was consistently able i e el L L L S

outperform approaches that do."

to outperform specialist models (assuming sufficient scale was used).
e Next was AlphaFold 3, which infamously dropped all the equivariance

Gen

erating Molecular Conformer Fields

and frames constraints from the previous model in favour of another

diffusion process coupled with augmentations and, of course, scale.
e Regardless, the greatly improved training efficiency of equivariant

models means the practice is likely to stay for a while (at least for
academic groups working on large systems such as proteins).
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Conformer field / ~ pg(/) evaluated continuously in G

stateof.ai 2024

Benaich et al., State of Al report 2024




Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Yuyang Wang'! Ahmed A. Elhag!2 Navdeep Jaitly! Joshua M. Susskind! Miguel Angel Bautista !

Abstract

We present a novel way to predict molecular
conformers through a simple formulation that
sidesteps many of the heuristics of prior works
and achieves state of the art results by using the
advantages of scale. By training a diffusion gen-
erative model directly on 3D atomic positions
without making assumptions about the explicit
structure of molecules (e.g. modeling torsional
angles) we are able to radically simplify struc-
ture learning, and make it trivial to scale up the
model sizes. This model, called Molecular Con-
former Fields (MCF), works by parameterizing
conformer structures as functions that map ele-
ments from a molecular graph directly to their 3D
location in space. This formulation allows us to
boil down the essence of structure prediction to
learning a distribution over functions. Experimen-
tal results show that scaling up the model capacity
leads to large gains in generalization performance
without enforcing inductive biases like rotational
equivariance. MCF represents an advance in ex-
tending diffusion models to handle complex scien-
tific problems in a conceptually simple, scalable
and effective manner.

Wang, Elhag et al. 2023

is the vast complexity of the 3D structure space, encom-
passing factors such as bond lengths and torsional angles.
Despite the molecular graph dictating potential 3D conform-
ers through specific constraints, such as bond types and
spatial arrangements determined by chiral centers, the con-
formational space experiences exponential growth with the
expansion of the graph size and the number of rotatable
bonds (Axelrod & Gomez-Bombarelli, 2022). This compli-
cates brute force and exhaustive approaches, making them
virtually unfeasible for even moderately small molecules.

Systematic methods, like OMEGA (Hawkins et al., 2010),
offer rapid processing through rule-based generators and
curated torsion templates. Despite their efficiency, these
models typically fail on complex molecules, as they of-
ten overlook global interactions and are tricky to extend to
inputs like transition states or open-shell molecules. Clas-
sic stochastic methods, like molecular dynamics (MD) and
Markov chain Monte Carlo (MCMC), rely on extensively ex-
ploring the energy landscape to find low-energy conformers.
Such techniques suffer from sampling inefficiency for large
molecules and struggle to generate diverse representative
conformers (Hawkins, 2017; Wilson et al., 1991; Grebner
et al., 2011). In the domain of learning-based approaches,
several works have looked at conformer generation prob-
lems through the lens of probabilistic modeling, using either
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The Hardware Lottery

Sara Hooker

Google Research, Brain Team

Hardware, systems and algorithms research communities have historically
had different incentive structures and fluctuating motivation to engage with
each other explicitly. This historical treatment is odd given that hardware
and software have frequently determined which research ideas succeed (and
fail). This essay introduces the term hardware lottery to describe when a
research idea wins because it is suited to the available software and hard-
ware and not because the idea is superior to alternative research directions.
Examples from early computer science history illustrate how hardware lot-
teries can delay research progress by casting successful ideas as failures.
These lessons are particularly salient given the advent of domain special-
ized hardware which make it increasingly costly to stray off of the beaten
path of research ideas. This essay posits that the gains from progress in
computing are likely to become even more uneven, with certain research
directions moving into the fast-lane while progress on others is further ob-
structed.



Transformers are Graph Neural
Networks

Exploring the connection between Transformer models such as

Translation?

Sentiment?

GPT and BERT for Natural Language Processing, and Graph Neural

Next d?
Networks. extwer

Part-of-speech tags?
Chaitanya K. Joshi

Last updated on Jun 21,2021 - 12 min read

Transformer

Standard GNN GAT

Translation?

Sentiment?

xK
Heads
Next word?

Part-of-speech tags?

4 K Vi€ N)) " (K] Vj € S}

+ Multi-head
mechanism

+ Weighted sum
aggregation

+ Normalization
layers

" . 2 Kvies
+ Residual links L {h; ¥je S}

Joshi 2021



X —> f — y

“How f interacts with the GlCHINCIICIMISION =
f(g.x) = f(x)



X —> f — y
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“How f interacts with the GlCHINCIICIMISION =
f(g.x) = f(x)
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“How f interacts with the _ and H acting on 8?”
f(g.x,h.0) = f(x,0)

) =—>




Symmetries of the Weights
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Symmetries of the Weights
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Symmetries of the Weights

L-layer neural network with weights & = (W, b4, ..., W;,b;)

Parameter space symmetry G = Sy X :+XSg,

Wi = II{W, b} = Il{b,
W =1wi,_, b; = I1'b,
b’L = b,

W, =W, _,

such that f(-,g0) = f(:,0)



Symmetries in the Gradient Space

L= Y A0,

(x,y)€EB

0¢(f(x,0)y)
aul

Vo, Lixy) =8  Where g, =

VWlL(x,y) = 81 a’lI‘— 1

Gelberg et B, Maron 2025



Symmetries in the Gradient Space

L= Y A X0),y)

(x,y)EB
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Gelberg et B, Maron 2025



Symmetries in the Gradient Space

L= Y A X0),y)

(x,y)EB

Gelberg et B, Maron 2025



Symmetries in the Gradient Space
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GradMetaNet

Adapted grad

GradMetaNet [ - — model optimisation
NN Grads / Weight delta

[{Vl,-- VM} e dl GradMetaNet [ - — model editing

\ Curvature info
GradMetaNet R - — model analysis

Gelberg et B, Maron 2025



GradMetaNet: Learning Optimisation

Gelberg et B, Maron 2025



GradMetaNet: Learning Optimisation

CIFAR10 CIFAR100 10 FashionMNIST Transformer on LM1B
2.41 V1
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2.2 4.4/ 09 10
—
- 4.2 1 |
=50, 0.8 g
o 4.0
0.7
18 381
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| | ] 341 i i [ | | Ik . '
0 1000 2000 0 1000 2000 O 1000 2000 0 2000 4000
Iteration Iteration Iteration Iteration
Optimizer
e Adam = === SGDM === DeepSet === UNF == DeepSet + GradMetaNet == UNF + GradMetaNet

Gelberg et B, Maron 2025



Low-Rank Adaptors (LoRA)




Low-Rank Adaptors (LoRA)




Low-Rank Adaptors (LoRA)
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Low-Rank Adaptors (LoRA)

_I_

c

r

LoRA (U, V) defined up to GL(r)

Putterman, Lim, Gelberg et B 2025




Learning on LoRAs (LOL)

Putterman, Lim, Gelberg et B 2025



Horwitz et al. 2025



Learning on LoRAs (LOL)

Ui

Vi

Uy

Putterman, Lim, Gelberg et B 2025

OGL

OGL

OGL

OGL

UL VLT
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Learning on LoRAs (LOL)

LoL Model GL-Inv. O-Inv. Expressive Preprocess Time Forward Time

Naive architectures

MLP([U, V]) X X O((m+n)r)  O((m +mn)r)

Transformer([U, V) X X O((m+mn)r)  O((m+n)r)

MLP(UV'T) O(mnr) O(mn)?
Efficient symmetry-aware architectures

MLP(O-Align([U, V])) X O((m +n)r?)  O((m +n)r)

MLP(s(UVT)) X O((m+mn)r*) O((m+n)r)

GL-net O((m+n)r)  O((m+mn)r)

Putterman, Lim, Gelberg et B 2025



Learning on LoRAs (LOL)

CelebA Attributes Imagenette Classes

LoL Model Test Loss () Test Acc (1) TestLoss({) TestAcc (1)

v 2 MLP([U, V]) 554 +.000 724+0.0 .7094+.004 49.6+1.3
82 Transformer([U, V]) 586+ .014 73.2+0.9 .695+.001 50.0+1.3
= MLP(UV") .267+.007 89.1+£04  .2644+.011 88.94+0.6

g g MLP(O-Align([U,V])) .333+.008 87.2+0.5 .2784+.008 87.8+0.3
25 MLP(o(UV")) 5094+.013 77.3+1.3 .638+.013 65.6+£0.6
=5 GL-net 232 1+ .007 91.3 + 0.1 244 £ .005 90.4 + 0.3

Using LoL models to predict CelebA attributes (left) and Imagenette classes (right)
of the finetuning data of diffusion models, given only the LoRA weights.

Putterman, Lim, Gelberg et B 2025



Drag-and-Drop LLMs

“datasets 77 i prompt-ckpt pairs
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3. evaluating DnD on novel datasets

Liang, Tang, Zhou et B 2025



Drag-and-Drop LLMs
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Liang, Tang, Zhou et B 2025
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STORY CONTINUES
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ICLR First Workshop on Weight Space Learning

International Conference On

Learning Representaions https://weight-space-learning.github.io/

Stella X. Yu Michael Mahoney Boris Knyazev Naomi Saphra Ludwig Schmit
University of Michigan UC Berkeley, ICSI Samsung Al Lab (SAIT) Harvard University Stanford University / Anthropic

Invited Speaker
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