
From science to society
The Erlangen AI Hub is one of nine AI research hubs across the UK funded by EPSRC. It sits at the centre of a collaborative network of stakeholders, fusing academic and industry knowledge with real world action, bringing world-leading research to applied settings. We aim to achieve rapid and enduring impact in science, industry, government and beyond.
The hub will form the basis for exciting, new cross-disciplinary partnerships, within and across research communities, establishing long-term capability that is critical in underpinning the future of AI and the UK ecosystem. It will also educate and nurture young talent through its PhD programme, supporting the development of a diverse and dynamic AI talent and skills pipeline, as its graduates go on to develop the next generation of AI systems in the UK and beyond.
The hub’s world-class research in AI will facilitate a new generation of AI methods and technology that can be exploited by industry, and its close involvement with industrial partners will provide a valuable route to early impact. Our output will also impact key policy makers across government departments and bodies, NGOs, and the third sector, boosting the UK’s capability and standing in AI research and innovation in a highly competitive international environment.
Some of our publications
Michael Bronstein
Fisher Flow Matching for Generative Modelling over Discrete Data.
Book Title: Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NeurIPS)
Oscar Davis‚ Samuel Kessler‚ Mircea Petrache‚ İsmail İlkan Ceylan‚ Michael Bronstein and Avishek Joey Bose
https://openreview.net/pdf/c16ab010bac44658a3c695f87e0c8d925deca3d4.pdf
Michael Bronstein
Future Directions in the Theory of Graph Machine Learning.
Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, İsmail İlkan Ceylan, Ron Levie, Derek Lim, Michael Bronstein, Martin Grohe, Stefanie Jegelka
https://openreview.net/pdf?id=wBr5ozDEKp
Michael Bronstein
Homomorphism Counts As Structural Encodings For Graph Learning (ICLR).
Linus Bao, Emily Jin, Michael Bronstein, İsmail İlkan Ceylan, Matthias Lanzinger
https://arxiv.org/pdf/2410.18676
Michael Bronstein
Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction.
Jarrid Rector-Brooks, Mohsin Hasan, Zhangzhi Peng, Zachary Quinn, Chenghao Liu, Sarthak Mittal, Nouha Dziri, Michael Bronstein, Yoshua Bengio, Pranam Chatterjee, Alexander Tong, Avishek Joey Bose
https://arxiv.org/abs/2410.08134
Michael Bronstein
FORT: Forward-Only Regression Training of Normalizing Flows.
Danyal Rehman, Oscar Davis, Jiarui Lu, Jian Tang, Michael Bronstein, Yoshua Bengio, Alexander Tong, Avishek Joey Bose
https://arxiv.org/abs/2506.01158
Michael Bronstein
Metric Flow Matching for Smooth Interpolations on the Data Manifold.
Kacper Kapusniak, Peter Potaptchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael Bronstein, Avishek Joey Bose, Francesco Di Giovanni
https://openreview.net/pdf/5fd21860d4ce3d4b1c290c2ac4b4e68d2b82e3a7.pdf
Michael Bronstein
Balancing Efficiency And Expressiveness: Subgraph GNNs With Walk-Based Centrality.
Joshua Southern, Yam Eitan, Guy Bar-Shalom, Michael Bronstein, Haggai Maron and Fabrizio Frasca
https://arxiv.org/pdf/2501.03113
Michael Bronstein
Relaxed Equivariance via Multitask Learning.
Ahmed A. Elhag, T. Konstantin Rusch, Francesco Di Giovanni, Michael Bronstein
https://arxiv.org/abs/2410.17878
Michael Bronstein
Scalable Equilibrium Sampling with Sequential Boltzmann Generators.
CB Tan, AJ Bose, C Lin, L Klein, MM Bronstein, A Tong
https://arxiv.org/abs/2502.18462
Michael Bronstein
Flow-Based Fragment Identification via Contrastive Learning of Binding Site-Specific Latent Representations.
RM Neeser, I Igashov, A Schneuing, MM Bronstein
https://openreview.net/forum?id=bZW1HLT1gI&r
Coralia Cartis
Global Optimality Characterizations and Algorithms for Minimizing Quartically-Regularized Third-Order Taylor Polynomials.
Wenqi Zhu, Coralia Cartis
https://arxiv.org/abs/2504.20259
Jeffrey Giansiracusa
Projective hypersurfaces in tropical scheme theory I: the Macaulay ideal.
Alex Fink, Jeffrey Giansiracusa, Noah Giansiracusa, Joshua Mundinger
https://arxiv.org/abs/2405.16338
Jeffrey Giansiracusa
Emergent photons and mechanisms of confinement.
Jeffrey Giansiracusa, David Lanners, Tin Sulejmanpasic
https://arxiv.org/abs/2505.00079
Peter Grindrod
Modularity, Hierarchical Flows and Symmetry of the Drosophila Connectome.
Grindrod P, Lambiotte R, Sahasrabuddhe R
https://arxiv.org/abs/2412.13202
Heather Harrington
Cover Learning for Large-Scale Topology Representation.
Luis Scoccola, Uzu Lim, Heather Harrington
https://arxiv.org/abs/2503.09767
Heather Harrington
Discrete signature tensors for persistence landscapes.
Vincenzo Galgano, Heather A. Harrington, Daniel Tolosa
https://arxiv.org/abs/2505.02800
Aideen Fay
Holes in Latent Space: Topological Signatures Under Adversarial Influence.
Aideen Fay, Inés García-Redondo, Qiquan Wang, Haim Dubossarsky, Anthea Monod
https://arxiv.org/abs/2505.20435
Jeffrey Giansiracusa
Topological Data Analysis of Abelian Magnetic Monopoles in Gauge Theories, to appear in Proceedings of the 41st International Symposium on Lattice Field Theory (LATTICE2024).
X. Crean, J. Giansiracusa and B. Lucini
https://arXiv.org/2501.19320
Peter Grindrod
Dynamical Systems on Generalised Klein. Bottles. Entropy 2025, 27, 119.
Grindrod, P.; Yim, K.M.
https://doi.org/10.3390/e27020119
Heather Harrington
Fibers of point cloud persistence
David Beers, Heather A Harrington, Jacob Leygonie, Uzu Lim, Louis Theran
https://arxiv.org/abs/2411.08201
Heather Harrington
Topological model selection: a case-study in tumour-induced angiogenesis.
Robert A McDonald, Helen M Byrne, Heather A Harrington, Thomas Thorne, Bernadette J Stolz
https://arxiv.org/abs/2504.15442
Iolo Jones
Manifold Diffusion Geometry: Curvature, Tangent Spaces, and Dimension
https://arxiv.org/abs/2411.04100
Renaud Lambiotte
Mean-field approximation for networks with synchrony-driven adaptive coupling. Chaos: An Interdisciplinary Journal of Nonlinear Science, 35(1).
Fennelly, N., Neff, A., Lambiotte, R., Keane, A., & Byrne, Á.
https://pubs.aip.org/aip/cha/article/35/1/013152/3332426
Renaud Lambiotte
Detection of anomalous spatio-temporal patterns of app traffic in response to catastrophic events.
Medina, S., Babul, S. A., Sahasrabuddhe, R., LaRock, T., Lambiotte, R., & Pedreschi, N.
https://arxiv.org/abs/2409.01355
Renaud Lambiotte
Concise network models of memory dynamics reveal explainable patterns in path data.
Sahasrabuddhe R, Lambiotte R, Rosvall M
https://arxiv.org/abs/2501.08302
Renaud Lambiotte
Garbage in Garbage out: Impacts of data quality on criminal network intervention.
Wang Ngai Yeung, Riccardo Di Clemente, Renaud Lambiotte
https://arxiv.org/abs/2501.01508
Renaud Lambiotte
From reductionism to realism: Holistic mathematical modelling for complex biological systems.
R Nartallo-Kaluarachchi, R Lambiotte, A Goriely
https://arxiv.org/abs/2503.20511
Renaud Lambiotte
Louvain for signed networks.
Pougué-Biyong, J. N., & Lambiotte, R.
https://arxiv.org/abs/2407.19288
Renaud Lambiotte
Matrix-weighted networks for modeling multidimensional dynamics.
Tian, Y., Kojaku, S., Sayama, H., & Lambiotte, R.
https://arxiv.org/abs/2410.05188
Renaud Lambiotte
Strong and weak random walks on signed networks. npj Complexity 2, 4 (2025).
Babul, S.A., Tian, Y. & Lambiotte, R.
https://www.nature.com/articles/s44260-025-00027-1
Renaud Lambiotte
Hippocampal Ripple Diversity organises Neuronal Reactivation Dynamics in the Offline Brain.
Manfredi Castelli, Vítor Lopes-dos-Santos, Giuseppe P. Gava, Renaud Lambiotte, David Dupret
https://www.biorxiv.org/content/10.1101/2025.03.11.642571v2
Renaud Lambiotte
Coarse-graining Directed Networks with Ergodic Sets Preserving Diffusive Dynamics.
E Hormann, R Lambiotte
https://arxiv.org/abs/2503.18823
Renaud Lambiotte
Nonequilibrium physics of brain dynamics.
Ramón Nartallo-Kaluarachchi, Morten L. Kringelbach, Gustavo Deco, Renaud Lambiotte, Alain Goriely
https://arxiv.org/abs/2504.12188
Ran Levi
Foundations of Differential Calculus for modules over posets.
J. Brodzki, R. Levi, H. Rihiimaki
https://arxiv.org/abs/2307.02444v4
Terry Lyons
Higher Order Lipschitz Sandwich Theorems.
McLeod, Andrew; Lyons, Terry
Journal of the London Mathematical Society
https://arxiv.org/abs/2404.06849
Anthea Monod
Tropical Fréchet Means.
Lin B, Ferry K, Améndola C, Monod A, Yoshida R
https://arxiv.org/abs/2502.05322
Anthea Monod
Tropical Gradient Descent.
Talbut R, Monod A
https://arxiv.org/abs/2405.19551
Anthea Monod
A Topological Gaussian Mixture Model for Bone Marrow Morphology in Leukaemia.
Wang Q, Song A, Batsivari A, Bonnet D, Monod A
https://arxiv.org/abs/2408.13685
Anthea Monod
Computing the Tropical Abel–Jacobi Transform and Tropical Distances for Metric Graphs.
Yueqi Cao, Anthea Monod
https://arxiv.org/abs/2504.11619
Gesine Reinert
Learning to Fuse Temporal Proximity Networks: A Case Study in Chimpanzee Social Interactions.
He, Y., Sandel, A., Wipf, D., Cucuringu, M., Mitani, J., & Reinert, G.
https://arxiv.org/abs/2502.00302
Gesine Reinert
A Kernelised Stein Discrepancy for Assessing the Fit of Inhomogeneous Random Graph Models.
Anum Fatima, Gesine Reinert
https://arxiv.org/abs/2505.21580
Ulrike Tillmann / Heather Harrington
Topology across Scales on Heterogeneous Cell Data.
Maria Torras-Pérez, Iris H.R. Yoon, Praveen Weeratunga, Ling-Pei Ho, Helen M. Byrne, Ulrike Tillmann, Heather A. Harrington
https://arxiv.org/abs/2505.02717
Terry Lyons
Signature methods in machine learning.
EMS Surveys in Mathematical Sciences.
Terry Lyons, Andrew D. McLeod
https://arxiv.org/abs/2206.14674
Anthea Monod
On the Limitations of Fractal Dimension as a Measure of Generalization.
Tan CB, Garcia-Redondo I, Wang Q, Bronstein MM, Monod A (NeurIPS 2024)
https://openreview.net/pdf?id=YO6GVPUrKN
Anthea Monod
Stability for Inference with Persistent Homology Rank Functions. Wang Q, García‐Redondo I, Faugère P, Henselman‐Petrusek G, Monod A
https://arxiv.org/abs/2307.02904
Anthea Monod
Tropical Expressivity of Neural Networks.
Lezeau P, Walker T, Cao Y, Bhatia S, Monod A
https://arxiv.org/abs/2405.20174
Anthea Monod
Confidence Bands for Multiparameter Persistence Landscapes.
I García-Redondo, A Monod, Q Wang
https://arxiv.org/abs/2504.01113
Edward Pearce-Crump
Permutation Equivariant Neural Networks for Symmetric Tensors.
https://arxiv.org/abs/2503.11276
Gesine Reinert
Triadic structures in multislice networks.
K Ren, T Trauthwein, G Reinert
https://arxiv.org/abs/2504.00508
Gesine Reinert
Individualised Counterfactual Examples Using Conformal Prediction Intervals.
James M. Adams, Gesine Reinert, Lukasz Szpruch, Carsten Maple, Andrew Elliott
https://arxiv.org/abs/2505.22326
Jared Tanner
Mind the Gap: a Spectral Analysis of Rank Collapse and Signal Propagation in Attention Layers.
Alireza Naderi, Thiziri Nait Saada, Jared Tanner
https://arxiv.org/abs/2410.07799